TRIGONOMETRICAL

SURVEYING, LEVELLING,

AND

RAILWAY ENGINEERING.

BY

WILLIAM GALBRAITH, M. A.,
F.R.B.S.A.EDIN., F. R.A. B. LONDON.

WILLIAM BLACKWOOD AND SONS, EDINBURGH AND LONDON. MDCCCXLII.

PRIMTED BY NEILL \& CO., OLD FIBHMAREET, EDINBURGH.

THE RIGHT HONOURABLE

THE EARL OF HADDINGTON, FIRST LORD COMMISSIONER OF THE ADMIRALTY,

 \&c. \&c. \&c.My Lord,

I gratefully acknowledge the favour conferred upon me by your permission to inscribe to you the following Treatise on Trigonometrical Surveying. The investigations from which the Formulce and Rules are derived cost me some mental exertion, and the computation of several of the Tables considerable mechanical labour. I shall, however, feel in sọme measure compensated for these, should the Surveys of the Officers of the service over which you have been called upon so honourably and advantageously to preside, be, by their means, facilitated and improved.

> I have the honour to be,

M_{y} Lord,

Your Lordship's most obedient and

Very humble Scrvant,

WILLIAM GAIBRAITH.

PREFACE.

Or late years the art of Surveying has made rapid advances in accuracy and precision, whether in reference to the improvement of instruments, the modes of observation, or the methods of reduction. The Trigonometrical Surveys, by different Governments of Europe, have partaken even somewhat of a national rivalry in the importance of their results, and in the application of the sciences to elicit whatever appeared to be most valuable or instructive.

The processes followed about the end of last century are now, in a great degree, superseded by those that are more accurate, as well as more easy. Many of these, however, can be followed successfully by the mathematician alone, and are totally unintelligible to the ordinary classes of professional men. To remove this difficulty, as far as my limits will permit, has been my object in the present work, in which I have given the results of my investigations only, in the shape of formule, rules, and tables.

Those connected with railways will, it is hoped, prove peculiarly useful at the present time, when so many lines are daily projected, whose relative capabilities are so much required to be investigated, both by the engineer and an intelligent public. It has been by tables such as these that
the Parliamentary Reports on the relative merits of the London and Edinburgh, and the London and Glasgow competing lines, have been drawn up, and they are indispensable in all similar researches.

Indeed all those tables chiefly useful to the practical man have, for that reason, been rendered full and precise, and their uses are clearly explained by numerous examples; while every encouragement has been given me by the Publishers to extend their utility and ensure their accuracy.

This Treatise will be found, independent of any other work, very complete of itself on the subjects of which it treats. To those, however, requiring information on the practice of Landsurveying, the method of keeping fieldbooks, planning estates, and finishing drawings of almost every variety of ground, Ainslie's Treatise on that subject will be found very satisfactory. To accommodate those professional men who may be so inclined, the Publishers have caused to be printed a limited number of copies of our Treatise in quarto, so as to correspond with Ainslie's work, and, when bound up along with it, the whole will form an extensive body of Surveying in almost all its departments.

CONTENTS.

TRIGONOMETRICAL SURVEYING.

General principles Page
Method of correcting observed angles 5
Computation of spherical excess 7
Computation of triangles 9
Reduction of angles to the centre of station 10
Reduction of the point observed to the axis of the instrument 11
General Remarks on conducting a survey 12
On finding the latitude generally 14
On finding the latitude and azimuth by the pole star 26
by the sun, in marine surveying 27
Application 31
Formulæ to convert feet on the earth's surface into seconds of arc 34
General formulæ to deduce latitudes, longitudes, and azimuths geodetically 36
Practical rules 37
To survey an island or country 41
To survey a river or strait 43
Application 45
General results 52
Correction of the English arc of the meridian 55
French arc of the meridian 56
To find the meridian parts in marine surveying 57
Correct solution of a problem in marine surveying 58, 140
Trigonometrical levelling 61
Formulæ for practice 62
Application of these 63
To determine the coefficient of terrestrial refraction by calculation 64
by observation 65
Application to the determination of heights 66
To determine the difference of level and distance by reciprocal observa- tions, independent of triangulation 68
To find the azimuth generally 71
Application to reduce the latitude and longitude of a station to a given point 74
RAILWAY SURVEYING.
General principles 76
Comparison of the relative merits of two lines of railway 83
To lay off curves in a railway 85

DESCRIPTION OF INSTRUMENTS.

Page
Definitions of angles 87
Spirit-level tube 89
Vernier 93
Reading microscope 95
Astronomical telescope 99
Common theodolite 101
Spirit-level 113
Altitude and azimuth circle 114
Transit-instrument 127
EXPLANATION OF TABLES. $\begin{array}{rr}\text { Exp. } & \text { Table } \\ \text { Page. } & \text { Page }\end{array}$
Table I. Dip of the horizon
II. Correction of the apparent altitudes of the sun and stars 142 1
III. Correction of the mean refraction 143 2
IV. Correction of the moon's apparent altitude 144 2
V. Logs of mean refractions 144 4
VI., VII., VIII., IX., X. To correct the mean refraction for pressure and temperature 145 5
XI. Logs to compute the terrestrial refraction 146 6
XII. Parallax of the sun in altitude 7
XIII. Parallax of the planets in altitude 7
XIV. Augmentation of the moon's semidiameter 7
XV. Reduction of the moon's parallax on the spheroid 148 7
XVI. Reduction of the latitude on the spheroid 7
XVII. Reduction to the meridian 8
XVIII. Equation to equal altitudes and azimuths 10
XIX., XX., XXI. To convert feet into arcs 11
XXII., XXIII. Reduction of λ to l 13
XXIV. To reduce a base from one level to another 15
XXV. Minute of arc in feet on the spheroid 15
XXVI. To convert mean solar into sidereal time 16
XXVII. To convert sidereal into mean solar time 16
XXVIII. To convert degrees into time 17
XXIX. To eonvert time into degrees 17
XXX. Diurnal variations 18
XXXI. Equivalent horizontal lines on railways 19
XXXII. Content of cuttings and embankments on railways 159 20

TRIGONOMETRICAL SURVEYING, \&c.

1. The figure of the earth is nearly that of a globe, and, for many purposes of surveying, this hypothesis will bring out conclusions sufficiently accurate ; but for the nicer and more extended processes, the earth must be considered as a spheroid compressed at the poles. The different measures of arcs of the meridian, \&c. concur to prove that the compression is about $\frac{1}{300}$, that is, the polar semiaxis is one-threehundredth part less than the equatorial radius. From the comparison of a number of arcs, I have found the radius of the equator equal to 20922642 feet, and the polar semiaxis 20852900 feet ; and from these, by the properties of the conic sections, the various formulæ, rules, and auxiliary tables required in Trigonometrical Surveying and Levelling are obtained.
2. Though an extensive trigonometrical survey may be commenced by any of its-details, yet it is usual to measure a base, in the first instance, with all possible attention to accuracy. It is generally chosen in as level a position as may be attainable, and it is a good plan to measure it first approximately by a hundred-feet chain, as a trial of its capabilities, and a check on the more accurate methods to be afterwards followed, A good theodolite, or transit instrument, is placed securely on a station at one extremity,
and, by the motion of the telescope in a vertical plane, such a number of stakes are intersected throughout the base, by this means placed in a straight line, as are sufficient to guide the subsequent measures. In the course of this process, considerable trouble will be sometimes experienced from the effects of lateral refraction, which shifts the stakes sometimes to the right and at other times to the left. The same atmospheric irregularities render it necessary to measure the horizontal and vertical angles repeatedly in the subsequent course of the survey, on different days at the most favourable hours, however powerful the instrument employed may be.
3. Ramsden's steel-chain, made in a peculiar manner, seemed to answer the purpose of lineal measure tolerably well; but it appears that Colonel Colby's compensation bars, constructed by Troughton, and composed of steel and brass, connected on an ingenious plan, possess a decided advantage, because the measurement is not carried on by a contact of the ends as in Roy's glass-rods, or the French metallic rods, with sliding languettes, but by ascertaining their coincidence from fine points on platina, with powerful microscopes, having cross wires in their foci, in a manner similar to the coincidence of verniers, or rather to the examination of the divisions of astronomical circles, by powerful reading microscopes. These microscopes are placed on compensating bars also, like the measuring rods, while all these bars themselves have been accurately tested by actual experiment, and found correct. It was in this way that the base-line on the shores of Loch Foyle in Ireland was mea-sured-the most, accurate operation of the kind perhaps hitherto performed.
4. From the extremities of this accurately measured base, angles are taken with the theodolite to other properly
selected points, and thence extended over that portion of the country to be surveyed,-the triangles, for the sake of accuracy, being chosen as nearly equilateral as possible.
5. The measurement of an arc of the meridian generally either accompanies, or is derived from, the operations connected with the survey. For this purpose, the position of the meridian, passing through one of the extremities of the base, or some of the angular points of the series of triangles, must be determined by a good theodolite, an astronomical circle, or by one of the best transit instruments. Then the angle which some of the sides of the adjacent triangles makes with the meridian must be accurately measured, from which the bearings of all the sides of the connected series of triangles may be found, in order to obtain either an arc of the meridian or to find the latitudes and longitudes of prominent points in the course of the survey.

The same operations must be repeated for the purpose of verification at the termination of the series, or oftener, if the survey be of great extent.
6. The latitudes of the extremities of the arc, or of two points adjacent and trigonometrically reduced to them, must be determined by the astronomical circle, or other proper instrument, from numerous observations on the same stars, at the same time as nearly as possible, so that any small error in the mean places of the stars, or in the necessary reductions, may be thus avoided,*
7. There are three different methods of making the usual calculations of the sides and angles of the triangles-the first by treating them as spherical triangles ; the second by

[^0]reducing the angles of the arcs to those of their chords; and the third, the easiest of the three, and sufficiently accurate for every practical purpose, is to deduct one-third part of the spherical excess, that is, the excess of the three spherical angles above two right angles, and using the remainders in the calculation, which give the lengths of the opposite sides sensibly the same as that by spherical trigonometry, or by a reduction to the chords, with mucheless trouble. In this last case, it ought to be recollected that the vertical spherical angles, before deducting one-third of the spherical excess, are equal; but often they may be unequal, if the triangles to which they respectively belong be unequal, since the spherical excess is proportional to the magnitude of the triangle. The angles so deduced are, for the sake of distinction, called mean angles.
8. To estimate the corrections to be applied to horizontal angles, measured on the surface of the earth at any point of observation, let m be the arithmetical mean of the whole, and the seconds of reading $s, s^{\prime}, s^{\prime \prime}, \& c$. and rejecting from each observation the same quantity, giving the results, if more convenient, a negative sign ; then $m-s, m-s^{\prime}, m-s^{\prime \prime}$, \&c. are the differences of the individual observations from the mean, and the weight of the determination, as it is technically called, or of the average m, is equal to the square of the number of observations divided by twice the sum of the squares of the errors, as shewn in the usual treatises on probabilities. In this manner the weight is found for each angle, and the error of the three angles of the triangle is the difference between the sum of the three angles, of which each is the mean of the observed angles, and $180^{\circ}+\epsilon$ is divided into three parts proportional to the reciprocal of the weights, which parts form the corrections to be applied, according to their signs, to the angles to which they respec-
tively belong. We have then the three corrected spherical angles, the sum of which is exactly $180^{\circ}+\epsilon$, in which ϵ is the small quantity called the spherical excess.
9. Example 1. Let A be East Lomond in Fifeshire, B Ben Cleuch in the Ochils, and C the Calton Hill at Edinburgh.

Observed Angles.

$\mathrm{B}=453855.19 \mathrm{by} 6$ observations.

$C=502515.83$ by 20 observations.

Sum $=179$	59	57.08	
$180+s$	$=180$	0	2.79
Error		5.71	

Though the preceding method (§8) be more strictly scientific, yet for ordinary purposes this error may be distributed among the angles simply as the reciprocal of the number of observations, thus :-

$$
\begin{aligned}
& \frac{1}{8}=0.167 \quad 0.167: \text { correction of } B+2.65 \\
& { }^{\frac{1}{2}} \mathbf{2}=0.050 \quad 0.050: \text { correction of } \mathrm{C}+0.79 \\
& 0.360 \text { The whole correction }+5.71
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathrm{A}=83 \quad 55^{\prime} \quad 48.33 \text { corrected. } \\
& B=453857.84 \\
& \mathrm{C}=502516.62 \\
& \begin{array}{lll}
180 & 0 & 2.79
\end{array}
\end{aligned}
$$

Now, if from each of these one-third of ϵ, or one-third of $2^{\prime \prime} .79$ be subtracted, there will remain for the mean angles

$$
\begin{array}{rlrl}
\mathrm{A} & =83^{\circ} & 55^{\prime} & 47.40 \\
\mathrm{~B} & =45 & 38 & 56.91 \\
\mathrm{C} & =50 & 25 & 15.69 \\
\text { Sum }-\epsilon & =\begin{array}{llll}
180 & 0 & 0.00
\end{array}
\end{array}
$$

Also the length of the arc in feet opposite the angle \mathbf{A}, is 146335.0 .

almost as exact as the more complex method.
Ex. 2. Let A be Benlomond in Stirlingshire, B Cairnsmuir upon Deugh in Galloway, and C Knocklayd in Antrim in Ireland, we shall have, by the more complex method (§8) of distributing
 the errors,

Observed Angles.

$$
\begin{aligned}
\mathrm{A} & =56^{\circ} 43 \quad 28.58 \text { by } 3 \text { observations. } \\
\mathrm{B} & =794228.69 \text { by } 1 \text { observation. } \\
\mathrm{C} & =43 \quad 3436.89 \text { by } 2 \text { observations. } \\
\mathrm{Sum} & =180034.16
\end{aligned}
$$

A by 1st obs. $56^{\circ} 43^{\prime} \quad 29.97 \mathrm{~s}$

Hence $\quad m-s=+1.39,(m-s)^{2}=1.1 .9321 \quad N_{N}=3$

$$
m-s^{\prime}=-1.54,\left(m-s^{\prime}\right)^{2}=2.3716 \quad \mathbf{N}^{2}=9
$$

$$
m-s^{\prime \prime}=+0.14,\left(m-s^{\prime \prime}\right)^{2}=0.0196
$$

$$
\mathrm{S}^{2}=. . \operatorname{~.~.~} \overline{4.3233}
$$

$\frac{\mathrm{N}^{2}}{2 \mathrm{~S}^{2}}=\frac{9}{8.6466}=1.041=$ weight, and $\frac{2 \mathrm{~S}^{2}}{\mathrm{~N}^{2}}=0.9607=$ the reciprocal of the weight. In like manner

$\frac{\mathrm{N}^{2}}{2 \mathrm{~S}^{2}}=0.4660=$ weight. Reciprocal $\frac{2 \mathrm{~S}^{2}}{\mathrm{~N}^{2}}=2.1462$. There being only one observation of the angle B, its weight cannot be computed like those of the other angles. Its weight must either be assumed or estimated by a comparison with those of the other angles. As the reciprocals of the weights in the other two angles are inversely as the squares of the number of observations nearly, this may also be estimated in the same ratio, and $\frac{2 \mathrm{~S}^{2}}{\mathrm{~N}^{2}}=8.6155$ nearly. Whence the $\operatorname{sum}=0.9607+2.1462+8.6155=11.7224=\Sigma \rho$, according to which the error must be applied by distributive proportion as in last example.

The spherical excess must now be computed by the formula

$$
\begin{equation*}
\epsilon^{\prime \prime}=\frac{\mathbf{R}^{\prime \prime} a}{r^{2}}=\dot{\mathbf{F}^{2}} a \sin 1^{\prime \prime} \tag{1.}
\end{equation*}
$$

in which a is the area of the triangle in square feet, F the factor from Table XIX. to convert feet into arcs. If the mean radius of curvature of the earth be taken, which, for moderate triangles will be sufficient, formula (1) becomes

$$
\begin{equation*}
\epsilon^{\prime \prime}=\frac{a}{2122300000} \text { nearly } \tag{2.}
\end{equation*}
$$

The \log of 2122300000 is 9.3268079 , and its arithmetical complement is 0.6731921 , a constant \log, to which the $\log a$, the \log of the area of the triangle, being added, will give the \log of ϵ^{\prime}, the spherical excess in seconds to be applied as formerly indicated.

Whence the spherical excess amounts to $1^{\prime \prime}$ in about 76 square miles.

From this an easy rule may be derived to find the spherical excess by a simple calculation, or even by the common sliding rule from a plan of the triangles, to which a scale of miles is adapted for measuring the base and perpendiculars in an approximate manner.

Set 152 on the sliding line of numbers to the base of the triangle in miles, then opposite to the perpendicular will be found the spherical excess in seconds and decimals, true to nearly two places of decimals in moderate triangles.

The triangle now under consideration being large, the more accurate formula (1.) will be employed to find $\epsilon^{\prime \prime}$.

To mean latitude of the triangle about $55^{\circ} \mathrm{N}$., and azimuth 45°, there will be found, by the aid of Table XIX. $\& c$.

to be distributed among the observed angles in the ratio of the reciprocals of their respective weights.

Hence the following spherical angles will be obtained,

$$
\begin{array}{lllll}
\mathrm{A}=56^{\circ} & 43 & 28.58+0.05= & 56^{\circ} & 43 \\
\mathrm{~B}=79 & 28.63 \\
\mathrm{C}=43 & 28.69+0.44=79 & 42 & 29.13 \\
\mathrm{C}=43 & 36.89+0.11=43 & 34 & 37.00 \\
\text { Corrected sum }=180^{\circ}+\epsilon=\begin{array}{llll}
180 & 0 & 34.76
\end{array}
\end{array}
$$

It must therefore be remembered that each of these angles is equal to its opposite vertical angle, and not those diminished by the effects of the spherical excess which immediately follow.

If, from each of the spherical angles thus determined, one-third of the spherical excess be deducted, the remainders will be the mean angles.

$$
\begin{array}{llllll}
\mathrm{A}=56^{\circ} & 43 & 28^{\prime \prime} .63-11.59=56^{\prime \prime} & 43 & 17 \prime \prime \\
\mathrm{~B}=79 & 42 & 29.13-11.59=79 & 42 & 17.54 \\
\mathrm{C}=43 & 34 & 37.00-11.58=43 & 34 & 25.42 \\
\text { Sum } & . & . & \overline{180} & 0 & 0.00
\end{array}
$$

Log arc c in feet $=\log 352037.62$	5.5465891
$\log \sin \mathrm{A} \quad 56^{\circ} \mathbf{4 3} 3^{\prime} 17^{\prime \prime} .04$	$9.9222127 \boldsymbol{\beta}$
$\begin{array}{llll}\text { Log } \sin \mathrm{B} & 794217.54\end{array}$	- $9.9929511 \boldsymbol{\gamma}$
$a . c . l o g \sin c \quad 433425.42$	0.1615997δ
Log arc a 426974.06 feet	$6.6304015 \quad \alpha+\beta+\delta$
Log arc b 502504.47 feet	$5.7011399 \alpha+\gamma+\delta$

In the Trigonometrical Survey, this operation is performed by reducing the spherical angles to those of the corresponding chords, which, in this large triangle, would give precisely the same results. That method requires considerably more labour without almost any corresponding advantage, and is now very generally abandoned. Since the observations by which the angles in Example 1. have been determined were about six times more numerous than those in the second, while the error in the former is nearly ten times greater than that in the latter, it seems that the laborious calculations depending upon the doctrine of probabilities in such cases may be very well saved, and that
the method of distributing the errors proportionally to the reciprocals of the number of observations, as in the first case, is fully sufficient. In the present case, the mean angles would be $\mathrm{A}=56^{\circ} 43^{\prime} 17^{\prime \prime} .10, \mathrm{~B}=79^{\circ} 42^{\prime} 17^{\prime \prime} .43$, and $\mathrm{C}=43^{\circ} 34^{\prime} 25^{\prime \prime} .47$, which would give results not differing much from the preceding.
10. The centre of the instrument should always, when possible, be placed in the vertical line occupied by the axis of the signal. When, however, this cannot be conveniently done, the observed angles must be reduced to it by an appropriate formula.

Let APB be the observed angle to be reduced to $A C B$, that at the axis of the signal C.

For this purpose it is necessary to measure the distance CP. Let the angle $\mathrm{APB}=\mathrm{P}, \mathrm{BPC}=p$, the angle of direction reckoned from the observed object on the left to the
 axis of the signal, $\mathrm{CP}=d, \mathrm{AC}=r$ the distance to the right, and $\mathrm{BC}=l$ the distance to the left,

Then

$$
\begin{equation*}
\mathbf{C}-\mathbf{P}=\mathbf{R}^{\prime \prime} d\left\{\frac{\sin (\mathbf{P}+p)}{r}-\frac{\sin p}{l}\right\} . \tag{3.}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{C}-\mathrm{P}=\mathrm{R}^{\prime \prime} d \sin \mathrm{P} \sin (\mathrm{~A}-p) \div r \sin \mathrm{~A} \tag{4.}
\end{equation*}
$$

in which $\mathrm{R}^{\prime \prime}$ is the arc $206264^{\prime \prime} .8$, the arc equal to the radius in seconds. When the theodolite cannot be conveniently placed at the same height as the top of the signal observed, the correction of the zenith distance will be

$$
\begin{equation*}
d \delta=\frac{\mathbf{R}^{\prime \prime} d h \sin \delta}{\mathbf{D}}=\frac{\mathbf{R}^{\prime \prime} d h}{\mathbf{D}} \text { nearly } \tag{5.}
\end{equation*}
$$

when δ differs little from 90°, in which δ is the observed zenith distance, $d h$ the difference between the height of the centre of the circle and the point observed, and D the dis-
tance. In these formulæ the signs of the trigonometrical quantities must be carefully attended to.

Example 1. Let $\mathrm{P}=65^{\circ} 41^{\prime} 6^{\prime \prime} .5, p=181^{\circ} 35^{\prime} 13^{\prime \prime} .5, d=155$ feet, $r=33329.8$ feet, and $l=74707.5$ feet; required the reduction of P to \mathbf{C} by formula (3)?

Ex. 2. From Allington Knoll the staff on Tenterden Steeple had a depression of $3^{\prime} 51^{\prime \prime} .0$, or $\delta=90^{\circ} 3^{\prime} 51^{\prime \prime} .0$, and the top of the staff was 3.1 feet higher than the axis of the instrument when at that station. On Tenterden Steeple the ground at Allington Knoll was depressed $3^{\prime} 35^{\prime \prime} .0$, or $\delta^{\prime}=90^{\circ} 3^{\prime} 35^{\prime \prime} .0$, and the axis of the instrument when at this station was 5.5 feet above the ground; required the corrections of the observed zenith distances, the lineal distance between the stations being 61777.5 feet?

$$
\begin{aligned}
& \log \mathrm{R}^{\prime \prime} . \\
& \begin{array}{l}
a . c \cdot \log \mathrm{D} \\
d h=+3.1 \text { feet } \log +\begin{array}{r}
5.314425 \\
+0.491362
\end{array} d h=-5.5 \text { feet } \log -0.209169 \\
d \delta=+10^{\prime} .35 \log +1.014956 \\
d
\end{array} \delta^{\prime}=-18^{\prime \prime} .36 \log -1.263957
\end{aligned}
$$

the corrections of the zenith distances sufficiently accurate by the more simple formula, since δ and δ^{\prime} are so near 90°.

When these corrections are to be applied to the angles between the verticals of two given points, they may be combined as follows:-

the same as $d \delta+d \delta^{\prime}=+10^{\prime \prime} .35-1.8^{\prime \prime} .36=-8^{\prime \prime} .01$.
(11.) In measuring horizontal or vertical angles in reference to terrestrial objects, if the atmosphere is not sufficiently clear, it is difficult to intersect the signals with the necessary accuracy. In this case an instrument called a heliotrope is generally used to reflect the sun's image in the direction of the observer. I have found the usual reflecting horizon of coloured glass set in a frame, turning on a horizontal and on a vertical axis to obtain any requisite inclination, very convenient for this purpose. The proper direction of the sun's image may be given by a circular piece of polished block tin or brass, with a circular hole of three or four inches in diameter in it, stuck in the groove of the usual offset-staff, through which hole the station of the observer must be seen, while, by reflection from the glass, the ring of the perforated disk must be illuminated.
12. To conduct a general series of observations, either on land or at sea, for the purposes of surveying, \&c. the following general remarks will be found useful.
1°, To record the state of the barometer and thermometer, three or four times a-day, more especially when making observations.
2°, To take altitudes carefully on objects useful for time, \&c. from three to six hours distant from the meridian.
3°, To find the error of chronometer as often as possible, to be able-to compute the correct time of transit of the sun, stars, \&c. by it, for latitude by circum-meridian altitudes, \&c.
4°, To observe objects having equal altitudes nearly, to
the north and south of the zenith, to destroy the effects of errors in the instruments employed, such as bias of axis, errors of division, glasses, artificial horizon, \&c.; the same method should be pursued for the accurate determination of time by selecting objects to the east and west.
5°, In the case of marine surveys, to observe on land as often as safe and convenient, with the best instruments for time, latitude and longitude, by lunars, moon-culminating stars, occultations, \&c.
6°, To choose a station somewhat elevated, free from woods, jungle, \&c. so that, with ordinary care, surprise by the natives will be impossible or difficult.
${ }^{-} 7^{\circ}$, To take magnetic bearings of well-defined and conspicuous objects whenever practicable, from points well determined in latitude and longitude. If convenient, angular observations with the theodolite and other instruments would be better.
8°, To repeat your observations if possible at least three times, to guard against mistakes, which, even with the greatest care and experience, will sometimes happen. To make one or more assistants take observations along with you, and to receive their reports without communicating your own. If there be such a difference as to indicate a decided fault somewhere, the observations ought to be repeated till the cause of the discrepancy be removed.
9°, To make such calculations only as may be absolutely necessary to carry on a connected series of useful observations.
10°, To keep regular and clearly written note-books, on a systematic plan, in which every thing is recorded, so that any mathematician or astronomer may be enabled to deduce fair conclusions at any future period. These books must be all properly ruled, titled, and numbered, for future refer-
ence. Marks and abbreviations should be all carefully recorded and explained.
13. These general views being premised, it will now be necessary to enter into the practical details. It is hardly possible, in these operations, to divest the formulæ entirely of an algebraical character in some cases, though it will be done as often as possible, One of the processes in trigonometrical surveying is the determination of the latitude. This operation is most simply performed by a meridian altitude or a zenith distance, and if a circumpolar star be selected, the result will be independent of the exact position of the star, because the latitude, in that case, is equal to half the sum of the altitudes of the star above and below the pole, corrected for the effects of refraction by Table V. When a zenith sector like that belonging to the Board of Ordnance is used, the stars must be selected near the zenith, and consequently little error is to be feared from the effects of refraction, while the great power of its telescope, and the general accuracy of its construction, render a single observation by it a close approximation to the truth. When, however, the smaller classes of instruments are employed, it then becomes necessary to repeat the observations near the meridian, reducing those taken at a short distance, such as about ten or fifteen minutes, to what they would have been on it, from a knowledge of its distance from that circle in time, the approximate latitude and declination of the object observed. In this way the results from smaller instruments become nearly equivalent to those of the greater, since as many observations may be taken by the former in one day as by the latter in ten.

ON FINDING THE LATITUDE.

14. The most easy and ready way of finding the latitude
is by a meridian altitude of a celestial body whose declination is known. Should the object have a sensible diameter, like the sun or moon, the altitude or zenith-distance of the lower or upper limb, or, what is superior, both are alternately observed, and, by the application of several corrections, that of the centre is obtained,

When reflecting instruments, such as the sextant, repeating circle, \&c. with an artificial horizon, are employed, the arc read off must, from the nature of the instruments, be halved before the corrections are applied. At sea, since the lower limb of the sun, moon, or the centre of a star, is generally brought to the visible horizon, the dip from Table I. must be subtracted before the corrections from Table II. \&c, are taken. At land, a meridian altitude of the sun, moon, or a planet, must be corrected for refraction, parallax, and semidiameter, but not for dip. At sea, the same corrections are applied after the dip has been subtracted. All these may be found by the following tables and the Nautical Almanack. The refraction constitutes the whole correction of a fixed star at land. At sea, the dip must be previously subtracted.* If the instrument does not give the zenith distance, it may be found by taking its complement to 90°, denominated north or south, according as the observer is north or south of the object.

Now, if the zenith distance and declination be of the same name, their sum is the latitude; but if of contrary names, their difference is the latitude, of the same name as the greater.

Example 1. At Pladda Light, in longitude $20^{\mathrm{m}} 30^{s}$ W., 20 feet above the level of the sea, on the 15th of August 1836, the follow-

[^1]ing observations of the sun's lower limb referred to the sea-horizon, were made with a pocket-sextant, within two or three minutes of the meridian, and both sides of it in succession; required the latitude?

1st observation, sun's lower limb,	$48^{\circ} 20^{\prime} 0^{\prime \prime}$
2 d	210
3d	21
4th	20
Mean of the four	482030
Dip to 20 feet (Table I.)	224
	4818
Correction to alt. 48° (Table II.)	046
True alt. of sun's lower limb	481720
Sun's semidiameter by Nat. Almanac	+ 1549
True alt. of sun's centre	$\begin{array}{rrr} \hline 48 & 33 & 9 \\ 90 & 0 & 0 \end{array}$
True zenith-distance	412651 N.
Sun's declination by Nat. Almanac*	13595 N.
True observed latitude	542556 N

2. At Edinburgh, on the 13th of March 1841, the following observations were made with a Dollond's sextant and an artificial horizon, one-half of which was made by a contact of the lower limbs, and the other by a contact of the upper, alternately, while the artificial horizon was reversed at the middle of the observations.

Time of apparent noon	$\stackrel{\text { h. }}{12}$	${ }_{0} \mathrm{~m}$	${ }_{0} \mathbf{8}$
Equation of time at Edinburgh	+	9	41
Error of watch	\pm	0	0
Time of transit by watch	12	9	41

In regard to reading, when the zenith-distance does not exceed 90°, I have caused on a pocket-sextant be engraved numbers on the arc, commencing with 0° at 90°, in an order

[^2]the reverse of that usually adopted, and likewise on the vernier, so that I read zenith-distances in place of altitudes, even with the sextant, in such cases as it may appear more convenient, or I may read alternately, in different series of observations, both ways, as a check upon each other, to avoid mistakes in the reading. In the present instance, however, the zenith-distance, when doubled, exceeded the limits of the instrument, as with the artificial horizon must be the case, and therefore double altitudes were necessarily taken.

Barometer 30.3 inches. Thermometer 53° Fahr.

The refraction must now be computed by Table V.:
Zenith-distance observed $58^{\circ} 48^{\prime} .6, \log \delta \theta \cdot 1.9832$
Barometer $\quad b=30^{\text {in }} .3$, log (Table VI.) . 0.0043
Thermometer $\boldsymbol{r}=53^{\circ}$, \log (Table VII.) . 9.9999
Thermometer $t=53^{\circ}, \log$ (Table VIII.) . 9.9973
Refraction . . . $r=96^{\prime \prime} .5 \log . \overline{1.9847}$
Sun's parallax (Table XII.) $=-7.4$

$$
\begin{aligned}
& r-\pi=\operatorname{cor} . \\
& \text { Mean zenith-distance }
\end{aligned} \cdot \quad . \quad 89.1=0^{\circ} \quad 1^{\prime} 29^{\prime \prime} .11 .
$$

$$
\text { Corrected zenith-distance . . . } 58502.4 \mathrm{~N} .
$$

It is now necessary to apply the reduction of the different particular observations by Table XVII., to reduce each
to what it.would have been had it been made precisely on the meridian, which is most concisely done by grouping the whole together. For this purpose let Δ be the required zenith-distance upon the meridian, and δ that obtained as above, then, in order to reduce δ to Δ, we have the following formula :-*

$$
\begin{align*}
\Delta=\delta & -2 \sin ^{2} \frac{1}{2} t \cos l \cos d \operatorname{cosec}(l-d) \\
& +2 \sin ^{4} \frac{1}{2} t\{\cos l \cos d \operatorname{cosec}(l-d)\}^{2} \cot (l-d) \quad . \tag{6.}
\end{align*}
$$

in which t is the time from the meridian either before or after transit, in mean solar time if the sun be observed, but in sidereal if a star, l the latitude, and d the declination, reckoned minus if of a contrary name to l. This distinction may be avoided by substituting the zenith-distance for $d-l$. It is clear that $2 \sin ^{2} \frac{1}{2} t$ is the versine of t, and that $2 \sin ^{4} \frac{1}{2} t$ is half the square of the former, which are designated V and v in the table. To express the reduction in seconds of arc, each of these must be multiplied by $R^{\prime \prime}$, an arc equal to the radius in seconds. This is accomplished by the logarithms for V and v at the termination of the table, which include also the division of the sum of the versines by the number of observations, thus simplifying the operation considerably. The computation is performed in the following manner :-

| Transit by watch | $\begin{array}{lll}\text { h. } & \text { m. } & \text { m. } \\ 9 & 41\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |

[^3]Now by the formula,
Estimated lat. $55^{\circ} 56^{\prime} 58^{\prime \prime}$ N. cos 9.748129
Sun's declinat. 25154 S. cos 9.999457

Reduction . $=-67.281=$. . $-0^{\circ} 1^{\prime \prime} 7^{\prime \prime} .3$
Corrected zenith-distance . . . $5850 \quad 2.4 \mathrm{~N}$.
True meridian zenith-distance . . 584855.1 N .
Sun's declination 25153.6 S .
True latitude $\overline{555655.5} \mathrm{~N}$.
By repeating the observations on stars both to the north and south of the zenith, the latitude will be accurately determined.

If the observations for latitude are taken by the mural or transit circle placed truly in the meridian, these are made when the celestial body is in or very near the centre of the field of view, at the intersection of the horizontal and vertical wires; but when the observations are repeated near the meridian, an exact knowledge of the time or error of the watch becomes indispensable, in order to find the time of transit by that watch with which the observations are recorded. For this purpose an approximate value of the latitude may be found as shewn in the first example, from which, and the following rule, the error of the watch within a few seconds may be obtained. With this error and a good sextant a nearer approximation to the true latitude may be found as in Example 2. Whence a new determination of the time may be found sufficiently exact to obtain the
latitude correctly, if a series of observations, at nearly equal distances from the meridian before and after transit, be employed. The time may also be found by the method of equal altitudes, as shewn in the explanation of Table XVIII, whenever the weather is steady, especially in fine climates. In our unsteady climate, absolute altitudes taken at nearly equal distances from the meridian east and west, and as close upon the prime vertical as possible, will prove very satisfactory, and then corresponding observations will not, easily be lost.

TO FIND THE TIME.

15. Set down under each other the true altitude, polar distance, and latitude. Find half the sum of these three, and the difference between that half sum and the altitude. Then to the \log cosecant of the polar distance add the \log secant of the latitude, the log cosine of the half sum and the \log sine of the difference, half the sum of these four logarithms will be the log sine of half the hour angle from the meridian. In case of determining the time in this manner, it would be convenient to estimate it according to the astronomical method of reckoning, namely, from noon to noon throughout the twenty-four hours. Hence in the forenoon of the civil day, the hour angle thus found must be deducted from 24 hours, and the remainder will be the time past noon of the preceding day.

In using a table of reduced versines, such as that given in my collection of mathematical and astronomical tables, the sum of the four logarithms mentioned above, rejecting tens in the index, will be the hour angle to be taken from the top of the page when the observation is made in the afternoou of the given day, but from the bottom if in the forenoon,
to give the time past the preceding noon. This result will be the apparent solar time, to which the equation of time reduced, for the approximate time and longitude, to the corresponding Greenwich mean time (G. M. T.), according to the directions given in the Nautical Almanac (N. A.), page 1 of each month, will give the mean solar time (M. T.) at the place of observation.

If a star be the object, the horary angle must be taken from the top of the page if the star be west of the meridian, but from the bottom if east, to be always reckoned west (W.). To this meridian distance add the star's right ascension reduced to the given time, and the complement to 24 hours of the sidereal time at mean noon (S. T. M. N.), reduced by Table XXVI. to the time and place of observation, the sum, rejecting 24 hours as often as possible, will be the mean solar time. If two stars be chosen, one to the east and another to the west, having the same altitudes nearly, any error from a faulty method of observing, or a bias in the instrument, will be avoided, and they should not have more than 30° of declination, because, from their slow motion even on the prime vertical, stars having great declinations are in this case to be avoided.

The method of observing with a sextant having been already shewn, that by the smaller classes of astronomical circles will now be exemplified. That which I generally nse is six inches in diameter, having three verniers, each reading $10^{\prime \prime}$, and the scale of its level, a fixed one, indicates $2^{\prime \prime}$ for each division, and reads from a central zero. The general formula to correct for the readings of the level, when applied to the zenith-distance, is

$$
\begin{equation*}
l=\frac{(e-o) a^{\prime \prime}}{2 n} \tag{7.}
\end{equation*}
$$

latitude correctly, if a series of observations, at nearly equal distances from the meridian before and after transit, be emphoyed. The time may also be found by the method of equal altitudes, as shewn in the explanation of Table XVIII, whenever the weather is steady, especially in fine climates. In our unsteady climate, absolute altitudes taken at nearly equal distances from the meridian east and west, and as close upon the prime vertical as possible, will prove very satistiactory, and then corresponding observations will not easily be lost.

TO FIND THE TIME.

15. Set down under each other the true altitude, polar distance, and latitude. Find half the sum of these three, and the difference letween that half sum and the altitude. Then to the \log cosecant of the polar distance add the \log serant of the latitude, the log cosine of the half sum and the los sine of the difference, half the sum of these four lonarithms will be the log sine of half the hour angle from the meriiian. In case of determining the time in this manmer. in would be convenient to estimate it according to the nutron mical method of reckoning, namelr, from noon to wind trozhout the twentr-four hours. Hence in the forenorid if the ciril dar. the hour angle thas found must be dejocetifrom 24 trouns and the remander will be the time jum wor if the fremeling dar.

II nite a tile of rediced versincts such as that given in H-: : it in intematical and astronomical tables the
 ut

to give the time past the preceding noon.
Ze the apparent solar time ghoon. This remilt will reduced, for the approximate, to which the equation of timu, responding Greenwich mean time and longitude, to the corthe directions given in the time (G. M. T.), acuording u, page 1 of each month, will Nautical Almanac (N. A.), at the place of obserration. give the mean solar time (M. 'I')

If a star be the otjoect, the horary ateple must b_{x} take:ll

 Table NTMI क力

 the instrmetr= $x=1$

 tionk are in in ity
The metin, it i $i=1$

cireles will zow in ase is sir inch a $5=0$
 ${ }^{2 \prime}$ for ${ }^{\text {fan } h}$

$$
=\cdots \quad \bar{F}
$$

in which l is the resulting effect, e the sum of the readings at the eye-end of the telescope, o the sum of those at the object-end, $a^{\prime \prime}$ the value of one division of the scale of the level, and n the number of observations.

In making $a^{\prime \prime}=2^{\prime \prime}$ the preceding formula becomes

$$
\begin{equation*}
l=\frac{e-o}{n} \tag{8.}
\end{equation*}
$$

by the scale of my circle.
In all cases care must be taken of the sign, according to the rules of algebra. The signs must be changed when the instrument shews altitudes. There are three parallel horizontal wires in the focus of the telescope, at each of which the contact of the sun's limb may be observed. I generally observe the contact of the upper limb only at all the three when the sun is ascending, and then, on reversing the circle, the lower limb. I reverse this order when descending, taking care of the apparent change of position, by an astronomical telescope, which shews objects inverted, that is, I observe the apparent lower limb first when the object is ascending, the apparent upper when descending, consequently the contacts are observed at nearly the same altitude, and have the same refraction.

Examples.-1. On the 11th of August 1836, at Lamlash, in the Island of Arran, in latitude, by estimation, $55^{\circ} 31^{\prime} 56^{\prime \prime} \mathrm{N}$., longitude $20^{\mathrm{m}} 32^{s} \mathrm{~W}$., the following observations on the sun were made to determine the time. The assistant-watch, by which the observations were made, was 28^{8} fast of the chronometer, while the barometer stood at 30 inches, and Fahrenheit's thermometer at 50°.

[^4]

On the evening of the same day, by a watch 10^{3} slow of
the same chronometer, and which was gaining 3^{8} a-day, the following observations were made on α Aquilæ.

Times by Watch. V. Z.D.

$\begin{array}{ll}\text { Level. } \\ + & - \\ e & o\end{array}$
$22 \quad 10$
$15 \quad 16$
$18 \quad 13.5$

$\frac{12}{67}$58.5 58.5 8.5 3 $8 \lcm{25.5}$ +3.2

Corrected zenith-distance $=47 \quad 7 \quad$ 8.5 N.
To find the mean time of transit by Tables XXVI. and XXVII., we have, by the Nautical Almanac, the

Sidereal time at Greenwich mean noon, $\quad \sigma=$| $\mathbf{h} \cdot$ | m. | |
| :--- | :--- | :--- |

Reduction for long. $20^{\mathrm{m}} 32^{\mathrm{s}} \mathrm{W}$. (Table XXVI.) $+\quad 3.37$
Sidereal time at Lamlash M. N.

$s=$| 9 | 19 | 58.46 |
| ---: | ---: | ---: |
| 19 | 42 | 49.27 |
| 10 | 22 | 50.81 |
| - | 1 | 42.04 |
| 10 | 21 | 8.77 |
| + | 9 | 12.50 |
| 10 | 30 | 21.27 |

h. m. 8 .

Transit by watch . 10	h.	
30	21	
s.		

2d ...
$102550, t_{1}=431$
$3 \mathrm{~d} \quad . \cdot \quad \cdot \begin{aligned} & 1033 \\ & 10\end{aligned} \mathbf{3 9}, t_{2}=239$
4th $\quad . . \quad .103950, t^{3}=929$

In this manner the observations may be repeated a sufficient number of times to ensure, from a mean of the whole, the requisite accuracy.

When the observations on stars are continued for a length of time, the logs of F and f remain nearly constant for the same star, and consequently these may be computed for such a number of stars as may be selected for observation. Indeed, special tables may be drawn up to every ten seconds, and these may be interpolated to every second in t, as was done by myself for α Aquilæ, when I observed at Inchkeith, from which the reduction to the meridian may be made at sight. For this computation special tables are sometimes given, but it may be easily effected by a table of reduced

- versines employed in the computation of time in last example, or by a table entitled Rising in the usual books of navigation.

$$
\text { Let } \begin{align*}
\mathrm{F}^{\prime \prime} & =2 \mathrm{R}^{\prime \prime} \cos l \cos d \operatorname{cosec} \delta \text { and } \tag{9.}\\
f^{\prime \prime} & =2 \mathrm{R}^{\prime \prime}(\cos l \cos d \operatorname{cosec} \delta)^{2} \cot \delta \tag{10.}
\end{align*}
$$

be computed for the given star.
For a Aquila, at Inchkeith, in latitude $56^{\circ} 2^{\prime} \mathrm{N}$., in August 1840 , when the star's declination was $8^{\circ} 27^{\prime} 7^{\prime \prime} N$., will be found.

$$
\begin{aligned}
& \log \mathrm{F}^{\prime \prime}=\cdot \cdot \cdot \cdot{ }^{5.489705} \log f \cdot 5.324769 \\
& \text { For } t=15^{\mathrm{m}} \log \text { R. V.S. } 7.029602 \times 2=4.059204 \\
& 1 \text { st term }=-330^{\prime \prime} .60 \log \overline{2.519307} \quad \overline{9.383973} \\
& 2 \mathrm{~d} \text { term }=+0.24 \\
& \text { Red. }=-\overline{330.36}
\end{aligned}
$$

Continuing this process for every 10^{8} of t, the reduction may easily be found for single seconds by interpolation, which renders this method very easy ; and then the smaller classes of circles become in effect nearly equal to the larger, on account of the facility with which observations may be very numerously repeated.
16. In mean latitudes, such as in Britain, observations on the pole-star are very advantageous and convenient for the determination of both latitudes and azimuths at the same time, which may be computed by the following for-mulæ:-

$$
\begin{aligned}
& \text { 1. } \sin u=\cos t \tan p \\
& \text { 2. } \sin \lambda=\cos u \cos \delta \sec p \\
& \text { 3. } l \\
& \text { 4. } \sin r=\lambda \pm u \\
& \text { 5. } \tan m=\sin t \sin p \\
& \text { 6. } \tan m=\sin t \tan p \sec \lambda
\end{aligned}
$$

nearly, and more simply than by (4) and (5) combined.

In these formule, t is the sidereal time after transit, p the star's polar distance, λ the latitude of the foot of the perpendicular arc from the star upon the meridian, and δ the zenith distance. Also l is the true latitude, in determining which u is minus in the first and fourth quadrants of t, and plus in the second and third. In like manner r is the perpendicular from the star upon the meridian, and m the azimuth.
17. If the latitude be previously well known, the azimuth may be found by Napier's Analogies, or from formulæ or rules derived from them. For this purpose let c be the complement of the latitude, and p the polar distance.

1. $\tan \frac{1}{2}(m+e)=\cot \frac{1}{2} t \cos \frac{1}{\frac{1}{2}}(c \sim p) \sec \frac{1}{2}(c+p)$,
2. $\tan \frac{1}{2}(m-e)=\cot \frac{1}{2} t \sin \frac{1}{2}(c \sim p) \operatorname{cosec} \frac{1}{2}(c+p)$.

Hence $\frac{1}{2}(m+e)-\frac{1}{2}(m-e)=e$, the azimuth of the pole-star from the meridian referred to the horizon. Or let d be the declination of Polaris, and l the latitude of the place of observation,

> 3. $\tan \frac{1}{2}(m+e)=\cot \frac{1}{2} t \cos \frac{1}{2}(d \sim l) \operatorname{cosec} \frac{1}{2}(d+l)$,
> 4. $\tan \frac{1}{2}(m-e)=\cot \frac{1}{2} t \sin \frac{1}{2}(d \sim l) \sec \frac{1}{2}(d+l)$.

Since d and l remain constant during a series of observations made in one day, while t varies, the logs of the two last factors are constant, and this renders the computation of an azimuth by the pole-star remarkably easy.
18. In many cases of nautical surveying, the true bearing of any well-defined object at a considerable distance, and on, or nearly on, the same level with the eye of the observer, is required to be determined with a reflecting instrument. To perform this operation, bring the image of the sun to the object, and make its nearest limb accurately to touch the object, while at the same time with another instrument let the sun's altitude be taken. Correct the observed distance
for index-error, if necessary, and add the sun's semidiameter ; the result will be the apparent distance of the sun's centre from the object. In like manner correct the sun's altitude for index-error, dip, and semidiameter, the result will be the sun's apparent altitude. Now, to compute the azimuthal angle between the sun and the object, there will be formed, when the object is on the same level with the eye, a quadrantal spherical triangle $\mathrm{HZ} \stackrel{\odot}{\odot}$, of which the sides are the zenith distance $\mathrm{ZH}=90^{\circ}$, the sun's zenith distance $\mathrm{Z} \odot$, and the oblique observed distance $\mathrm{H} \odot$; to find the angle Z at the zenith, which is the difference be-
 tween the bearings of the object and the sun. Compute the sun's true azimuth from the altitude in the usual manner, take the sum or difference of these, according to circumstances, as indicated by their relative positions with respect to the meridian, and the true bearing of the object will be determined. If the bearing of the same object be taken with the azimuth compass, the variation of the compass will likewise be obtained. To determine the true bearing in this manner, it must be remarked that the sun's vertical motion should be as great as possible, or his position ought to be near the prime vertical, and that the object to which the sun is referred should be about 90° from the point of the horizon to which the sun is vertical. When this is impossible, the object should be chosen so that the angle which the observed arc or distance makes with the horizon, may not by estimation exceed 45°. When the object is elevated above the level of the eye, it is necessary to observe its altitude, and compute the angle at the zenith from the three sides of an oblique angled spherical triangle formed by the observed distance, and the zenith distances of the sun and
the object whose azimuth is required; and this is in fact the first part of the method of reducing, by spherical trigonometry, the apparent distance to the true in lunar observations, that is, from the two apparent altitudes and apparent distance to find the angle at the zenith.

The azimuth of a point or signal, by means of the sun or a star, may be found readily when the time is accurately known. In this case there are given the polar distance and the hour angle, or that contained at the pole, to determine the angle at the zenith by the Analogies of Napier.

If the sun be the object, the angle at the pole is the complement of the time to 12^{h} in the forenoon, but the apparent time itself, if in the afternoon. If a star be observed, the angle at the pole is equal to the sidereal time minus the right ascension of the star, or equal to the apparent time plus the right ascension of the sun, minus the right ascension of the sitar. The polar angle is minus when the star is east of the meridian, plus when west.

When extreme accuracy is required in determining the azimuth of a signal, the observations of the angular distance, by the reflecting circle or by Borda's repeating circle, between the star and the signal should be made at the same instant with the zenith-distance of the star and the signal, if convenient, though that of the latter may be made at any time either preceding or following the observations, since, with the exception of refraction, it remains stationary. These distances are the apparent distances as affected by parallax and refraction. If the zenith-distance of the star cannot be conveniently observed at the same time when the angular distance between the star and signal are taken, it may be calculated by spherical trigonometry, as will be afterwards shewn, taking care to apply the effects of refraction
and parallax to find the apparent zenith-distance with a contrary sign to that used in finding the true.

When the azimuth is found by observations on the polestar, or similar methods, the horizontal circle must be read at the same time with the vertical, in order to compare the azimuth of the star with a referring lamp, and from this, at any convenient opportunity, other conspicuous points selected as stations in the general survey.
19. I shall now proceed to illustrate these rules and formulx by practical applications. Having determined the error and rate of my chronometer, as previously exemplified, the following observations were made at Inchkeith Lighthouse, to determine the latitude and direction of the meridian by the pole-star. For this purpose I resided on the island a few days, during which I made several observations on the heights in the vicinity of Edinburgh, as well as some on the latitude by the sun and a Aquilæ, for which a special table was drawn up in the manner already explained, by which the reduction to the meridian for the distance t was made by inspection. I chiefly trusted those made on the 21st of August upon the pole-star, which I continued to observe from about 10 o'clock in the evening to 1 o'clock next morning. During this period I completed eight series of double observations, reversing the circle each time, or sixteen single observations, comprehending forty-ight readings of the verniers on each circle, accompanied by the times of observations, and the readings of the level. The circles used were six inches in diameter, having each three verniers reading to $10^{\prime \prime}$, and a level whose divisions each indicate $2^{\prime \prime}$. Having made these preliminary remarks, so that every thing relative to my operations may be fully understood, I shall record the first series of observations, and perform the computations at full length, so as
to render the whole operation clear and distinct to every one having a very ordinary knowledge of such subjects. In this record b signifies the height of the English barometer, τ the temperature by its attached or interior thermometer, t the temperature of the air by the exterior thermometer, in degrees of Fahrenheit; Ver., the different verniers of the respective circles marked $A, B, C ; Z . D$. the observed zenith-distance ; H. D. the horizontal angular distance to the referring lamp; I. M. T. Inchkeith mean time; G. M. T. Greenwich mean time; S. T. G. M. N. sidereal time at Greenwich mean noon, \&c.

POLARIS.

Inchkeith, August 21. 1840, $b=29^{\text {in }} .70, \tau=64^{\circ}, t=64^{\circ}$ Error of Chronometer at 104^{h} P.M. fast $1^{\mathrm{m}} 58^{8 .} 4$, rate $19^{\mathrm{s}} .7$ gaining,

Refraction.

Sidereal Time, t
S. T. G. M. N. $\quad \begin{array}{cccc}\text { h. } \\ \mathbf{9} & 59 & \mathbf{5} . & \mathbf{8 9} .28\end{array}$
I. M. T. . . 101221.60

Red. to G.M.T. +142.65
Sid. time obs. $20 \quad 13 \quad 33.53$
Star's R. A. . 1236.78
t. . . $=191056.75$

p	$1^{\circ} 32^{\prime} 33^{\prime \prime} .8$ tan	8.4302701 sec	0.0001575 tan	8.4302701
t	$19^{\mathrm{h}} 10^{\mathrm{m}} 56^{\mathrm{s}} .75 \mathrm{cos}$	9.4837861	\sin	9.9788502
	- $0^{\circ} 28^{\prime} 12^{\prime \prime} .28 \tan$	7.9140562 cos	9.9999854	
	$\delta=3$	$3^{\circ} 31^{\prime} 33^{\prime \prime} .5 \cos$	9.9209762	
λ	$\begin{array}{lll}56 & 30 & 9.00\end{array}$	\sin	9.9211191 sec	0.2581391
l	$56 \quad 1 \quad 56.72$	$m=$ N. 2°	$39^{\prime} 40^{\prime \prime} .15 \mathrm{Etan}$	8.6672594

In the same manner the remaining parts of the series were computed by the formulæ in $\S 16$.

But since the star moves in a circle, the mean zenithdistance and horizontal angle is not that at the middle of the arc described during the interval between the observations, as it ought to be, and, by investigation, the following corrections must be applied to the latitude and azimuth.

$$
\begin{align*}
d l & =\left(p^{\prime \prime} \sin 1^{\prime \prime} \cos t+p^{\prime 2} \sin ^{2} 1^{\prime \prime} \cos 2 t \cot \delta\right) f . \tag{11}\\
& =p^{\prime \prime} \sin 1^{\prime \prime} \cos t f ; \text { in this case, } \\
d m & =-p^{\prime \prime} \sin 1^{\prime \prime} \sin t \sec l f \quad . \quad . \quad . \tag{12}
\end{align*}
$$

in which f is the factor, from Table XVII.

In this way the corrections were computed for the whole series, and the final results are as follow :-

No.	${ }^{\prime} l^{\prime}$,	, " ${ }^{\prime \prime}{ }^{\prime}$	l,	"		Successiv	e values.
$\cdot 1$	561	$56.72+0.44=56$	1	57.16		561	57.16 N
2	2	$21.140+0.33=$	2	1.47		1	59.31
3	2	$22.04+0.69=$	2	2.73	- \cdot	2	0.44
4	2	$2.00+0.74=$	2	2.74	-	2	1.03
5	1	$56.95+0.30=$	1	57.25	- -	2	0.26
6	1	$58.30+0.21=$	1	58.51		1	59.98
7	1	$59.70+0.29=$	1	59.99	-	2	0.12
8	2	0.10+0.49=	2	0.59		2	0.06
	Reduction to centre of tower for 25 feet					-	0.24
	True latitude					56159.82 N	

Azimuth of Light.

No.	- H. D.,		${ }_{0} m^{\prime}$,	"	${ }^{\boldsymbol{d} / \mathrm{m}}$	- ${ }^{m}$	\boldsymbol{n},	"
1	615453.3	$+$	239	$40.15+$	$+2.48=\mathrm{N}$	N 64	34	35.93 E
2	62040.5	+	233	$49.35+$	$+1.24=$			31.09
3	$\begin{array}{llll}62 & 8 & 3.7\end{array}$	$+$	226	$35.20+$	$+2.16=$			41.06
4	621458.0	$+$	219	$31.10+$	$+1.92=$			31.02
5	622115.0	$+$	213	$24.80+$	$+0.69=$			40.49
6	62277.4	+	27	$27.60+$	$+0.43=$			35.43
7	62330.0	+	21	$37.20+$	$+0.52=$			37.72
8	624014.5	+	154	$17.20+$	$+0.66=$			32.36
	Mean azimuth					N 64		35.64 E
	Reduction to	ntr	of tow	er	.	-		35.70
	Azimuth at ce	tre	of towe			N 64	33	59.94 E
	Angle to Obs	vato				134	9	7.30
	Observatory b	ars	rom lig	hthouse	-	198	43	7.24
						180	0	0.00
	Observatory b	ars	from In	chkeith		S 18		7.24 W
	Convergence	the	meridi	ans $c^{\prime \prime}$	-	-	2	21.50
	Inchkeith bea	fro	n Obse	rvatory		N 18	40	45.74 E

The method of computing $c^{\prime \prime}$ will be subsequently given. The Trigonometrical Survey station is S. $27^{\circ} 27^{\prime} \mathrm{W}$., distant 6.855 feet from the centre of the dome or pillar, therefore,

To the bearing of Inchkeith above		N 18	4045.74 E
Add reduction	- -	+	6.74
Inchkeith bears from Trigonomet. Survey station		N 18	4052.48 E
By Trigonometrical Survey			4053.50
Mean			4052.99

,20. Having now shewn the method of preparing the observed horizontal angles for computation, of fixing the latitude of any selected point, and the bearing of another from it, I shall now give a few rules and formulæ for deducing from these, and an extended triangulation, the latitude, longitude, and azimuth of the principal points of the series, reserving the computation of heights to a succeeding part of this essay.

In deducing latitudes, longitudes, azimuths, and heights geodetically, it is necessary to be enabled to convert readily any distance measured in feet on the earth's surface into arcs; and hence the radius of curvature of the measured arc, in any given position on the terrestrial spheroid, is required by the principles of the conic sections.

Now, the radius of curvature is to an arc $R^{\prime \prime}$, equal to the radius in seconds, as the distance in the same measure with the radius of curvature is to the corresponding arc in seconds. Let $\mathrm{A}^{\prime \prime}$ be the required arc in seconds, corresponding to \mathbf{A}, any measured arc on the earth's surface in feet, to which r is the radius of curvature,

$$
\begin{equation*}
r: A:: \mathbf{R}^{\prime \prime}: \mathbf{A}^{\prime \prime} \text { or } \mathbf{A}^{\prime \prime}=\frac{\mathbf{R}^{\prime \prime}}{r} \times \mathrm{A} \tag{13}
\end{equation*}
$$

Wherefore, if M be the factor to convert a curvilineal distance on the meridian into seconds of arc; P that on the perpendicular to it; and O that on any oblique arc, making an angle α with the meridian; then, if a denote the radius
of the equator, b the polar semiaxis, e the eccentricity, and l the latitude ;

$$
\begin{align*}
& \mathbf{M}=\frac{\mathbf{R}^{\prime \prime}}{a^{2} b^{2}}\left(a^{2} \cos ^{2} l+b^{2} \sin ^{2} l\right)^{\frac{3}{2}}=\frac{\mathbf{R}^{\prime \prime}}{a\left(1-e^{2}\right)}\left(1-e^{2} \sin ^{2} l\right)^{\frac{3}{2}} \ldots . \tag{14}\\
& \mathbf{P}=\frac{\mathbf{R}^{\prime \prime}}{a^{2}}\left(a^{2} \cos ^{2} l+b^{2} \sin ^{2} l\right)^{\frac{1}{2}}=\frac{\mathbf{R}^{\prime \prime}}{a}\left(1-e^{2} \sin ^{2} l\right)^{\frac{1}{2}} \ldots . . \tag{15}\\
& \mathbf{O}=\mathbf{M} \cos ^{2} \alpha+\mathbf{P} \sin ^{2} \alpha=\mathbf{P} \frac{1-e^{2}\left(1-\cos ^{2} l \cos ^{2} \alpha\right)}{1-e^{2}} \quad . . \tag{16.}
\end{align*}
$$

From these formulæ Tables XIX., XX., and XXI. have been computed, the coefficient for terrestrial refraction n, in the two last, having been taken equal to 0.08 or $\frac{1}{125}$ of the intercepted arc, which is a sufficient approximation to the truth in ordinary atmospheric circumstances.
21. Previously to the determination of heights trigonometrically, the curvilineal distance, or its chord at the level of the sea, ought to be augmented for the height of the lower station, since the radii from the centre through their summits diverge proportionally to that height. This correction may be obtained from the following formula, or the results derived from it arranged in a table. Let K be the chord of the augmented arc A at the height h, derived from the arc a at the level of the sea, then

$$
\begin{equation*}
\log \mathrm{K}=\log a+\frac{\mathrm{M} h}{\rho}-\frac{\mathrm{M} a^{2}}{24 \rho^{2}}=\log a+m h-p a^{2} \tag{17.}
\end{equation*}
$$

From this formula Table XXIV. was computed. The number S is the difference of the \log secant of half the angle v between the verticals and $\log p a^{2}$, which contributes to greater accuracy in considerable heights. I shall now give the necessary formulæ and rules to find latitudes, longitudes, and heights geodetically.

Explanation of Symbols, with their Values.

A = the measured arc in feet on the surface of the Terrestrial Spheroid.
$\mathbf{R}^{\prime \prime}=$ an arc equal to the radius in seconds, $\log 5.3144251$
$a=$ the radius of the equator in feet, . . $\log 7.3206165$
$b=$ the polar semiaxis in feet, . . . $\log 7.3191664$
$e=\left(\frac{a^{2}-b^{2}}{a^{2}}\right)^{\frac{1}{2}}=\frac{\{(a+b)(a-b)\}^{\frac{1}{2}}}{a}=0.0815815, \quad \log \overline{2} .9115918$
$\varepsilon=\frac{1}{8} e^{2}+\frac{1}{8} e^{4}+\& \mathrm{c}$. $={ }_{5} \frac{1}{\delta} \delta=$ elliptically, . $\log \overline{3} .5228787$
$f=a e=1706900$ feet $\log 6.2322083$
$c=a-b=a \varepsilon=69742$ feet, . . . $\log 4.8434944$
$l=$ the given latitude farthest from the equator.
$l^{\prime}=$ the required latitude nearest the equator.
$\lambda=$ the latitude of the foot of the perpendicular from the required point, upon the meridian passing through the given point.
$z=$ the given azinuth.
$z^{\prime}=$ the required azimuth.
$\Delta l=$ the difference of latitude.
$\Delta p=$ the difference of longitude.
$\Delta z=$ the difference of azimuth or convergence of the meridians passing through the given and required points.

Making $\frac{\mathrm{AR}^{\prime \prime}}{a}=a^{\prime \prime}$, we shall have, from \cdot an investigation that cannot be conveniently given here,
(1.) $\Delta l=-a^{\prime \prime}\left(1+2 \varepsilon-3 \varepsilon \sin ^{2} l\right) \cos z+a^{\prime \prime 2} \frac{1}{2} \sin 1^{\prime \prime} \tan l \sin { }^{2} z$
(2.) $\Delta p=a^{\prime \prime}\left(1-\varepsilon \sin ^{2} l\right) \sin z \sec l-a^{\prime \prime 2} \sin 1^{\prime \prime} \sin z \cos z \tan l \sec l$ (19)
(3.) $\Delta z=a^{\prime \prime}\left(1-\varepsilon \sin ^{2} l\right) \sin z \tan l^{\prime}+a^{2} \frac{1}{\frac{1}{2}} \sin 1^{\prime \prime} \sin z \cos z$. .

These are the principal formulæ generally required. In addition to these, that for determining an oblique arc may be added,
4. $\Delta 0=a^{\prime \prime}\left(1-\varepsilon \sin ^{2} l+2 \varepsilon \cos ^{2} l \cos ^{2} \alpha\right)$
$\log \sin 1^{\prime \prime}=4.685575, \log \frac{1}{2} \sin 1^{\prime \prime}=4.384545$
Introducing the values of M, P, and O , of which the logarithms are given in Tables XIX., XX., and XXI., according to the directions given along with them, making first $\boldsymbol{r}^{\prime \prime}$. equal to the reduction of λ to l, derived from the last part of formula (18), given in Tables XXII. and XXIII.
(4.). $\Delta l=-\mathrm{AM} \cos z+r^{\prime \prime}=\mathrm{AM} \cos m-r^{\prime \prime}$
(5.) $\Delta p=\quad \mathrm{AP} \sin z \sec l^{\prime}=\mathrm{AP} \sin m \sec l^{\prime}$
(6.) $\Delta z=\Delta p \sin \frac{1}{2}\left(l+l^{\prime}\right) \sec \frac{1}{2}\left(l-l^{\prime}\right)$.

In north latitudes, the azimuth z is generally reckoned from the south towards the west or east, and is the supplement of m, or that reckoned from the north, in the application of which attention must be paid to the signs. Indeed, in some operations, the azimuth is reckoned from the east westwards round the whole circle, in accordance with which the arguments to Tables XIX., XX., and XXI. have been so given.

PRACTICAL RULES.

22. To illustrate the method of employing these formulæ and tables in calculation, let P be the north pole in this instance, E a point in the equator, Ba point of which the latitude and longitude are known, Tanother place whose bearing and distancefrom B are given, and from these the latitude and longitude of T and the azimuth of B from T, are required. Also, let PBE be the meridian passing through B, PTF the meridian passing through T, PBT the azimuth denoted by α in the formulæ, or m^{\prime} or z^{\prime} in the tables, BT the distance or curvilineal arc a in
 feet, of which the chord is $k, \mathrm{~T} \lambda$ a perpendicular from T, the required point upon the meridian passing through the given point B, the distance from the foot of which to the equator, measured by $\mathrm{E} \lambda$, is the latitude of $\lambda ; l^{\prime}$ the latitude of the place nearest the equator, l that of the more distant, and $\mathrm{T} l$ the parallel of latitude
passing through T, making $\mathrm{E} l$ the latitude of T , or that required. The very small arc λl, called the reduction of λ to l in Tables XXII. and XXIII., must always be subtracted from λ to give l^{\prime}.

If this small arc exceeds the limits of the tables, it may be computed. For this purpose, it may be observed that if $p^{\prime \prime}$ be the perpendicular arc, then $p^{\prime \prime}=A P \sin z$, the argument to find $r^{\prime \prime}$ from the tables. But, independent of the tables,

$$
\begin{equation*}
r^{\prime \prime}=\mathrm{A}^{2} \mathrm{P}^{2} \sin ^{2} z \frac{1}{2} \sin 1^{\prime \prime} \tan l=p^{\prime \prime 2} \cdot \frac{1}{2} \sin 1^{\prime \prime} \tan l \tag{25}
\end{equation*}
$$

the formula from which the tables were constructed, and may supply their place in cases beyond their limits.

It must likewise be observed that $B \lambda$ is a small arc of the meridian to be added to the given latitude in proceeding towards the pole, or subtracted when receding from it, to give the latitude of the foot of the perpendicular λ, the argument for taking the $\log \mathrm{P}$ from the tables. The argument to obtain $\log \mathbf{M}$ is half the sum of the latitudes approximately, or $\frac{1}{2}\left(l+l^{\prime}\right)$, to be derived from a provisory calculation, in order to get the mean latitude between the given stations. The number of minutes to be added to the smaller latitude l^{\prime}, or subtracted from the greater l, to get $\frac{1}{2}\left(l+l^{\prime}\right)$, may be computed by the following rule.

To the constant $\log 5.914630$, add the \log of the meri-dian-distance in feet, the sum will be the \log of half the difference of latitude in minutes, or $\frac{1}{2}\left(l-l^{\prime}\right)$, to be added to l^{\prime}, or subtracted from l, to give $\frac{1}{2}\left(l+l^{\prime}\right)$, the middle latitude sufficiently near the truth for taking $\log \mathrm{M}$ from the tables.

1. By a provisory calculation, such as that just given, or by a repetition of the more accurate method now to be shewn, if thought necessary, find the middle latitude, or $\frac{1}{2}\left(l+l^{\prime}\right)$.
2. To the logarithm of the curvilineal distance, or arc a, add the \log cosine of the azimuth, or m, and the $\log \mathbf{M}$ from

Table XIX., answering to the mean latitude, or $\frac{1}{2}\left(l+l^{\prime}\right)$, the sum will be the logarithm of an arc of the meridian in seconds $m^{\prime \prime}$, to be added to the latitude l^{\prime} if approaching the pole, but subtracted from l if receding from it, the sum or difference will give λ, the latitude of the foot of the perpendicular upon the given meridian from the point in that required.
3. To the \log of a add the \log sine m, the azimuth, the $\log \mathrm{P}$ answering to λ, the sum will be the $\log p^{\prime \prime}$, the perpendicular are in seconds.
4. To the constant $\log 4.384545$ (the $\log \frac{1}{2} \sin 1^{\prime \prime}$) add $\log \tan \lambda$ and twice the $\log p^{\prime \prime}$, the sum will be $\log r^{\prime \prime}$, the reduction of λ to l always subtractive. This may be also taken from Tables XXII. or XXIII., if within the limits of the tables. It may be observed, that four times $r^{\prime \prime}$, answering to $\frac{1}{2} p^{\prime \prime}$ will be the reduction to $\dot{p}^{\prime \prime}$ nearly, which will extend the table, and the results will not differ much from the truth. This, at least, will be a check to calculation.
5. To the \log tangent $p^{\prime \prime}$ add the \log secant l^{\prime}, the sum will be the \log tangent Δp, the difference of longitude, which, properly applied to the longitude of the place of observation, will give the longitude of the point required.
6. To \log tangent Δp add $\log \operatorname{sine} \frac{1}{2}\left(l+l^{\prime}\right)$ and the \log secant $\frac{1}{2}\left(l-l^{\prime}\right)$, the sum will be the \log tangent Δz, the convergence of the meridians of the given and required points, which, added to the azimuth m^{\prime}, at the latitude nearest the equator, will give m, or rather z, the azimuth at the latitude farthest from it, and vice versa.
7. To the $\log 0$, answering to the middle latitude and given azimuth α, from Table XIX., add the \log of the given distance a, the sum will be the \log of the intercepted arc in seconds, which measures the angle between the verticals of
the given points. If the $\log \mathrm{O}$ be taken from Table XX., the result will be angles of the verticals diminished by the effect of refraction, taken at 0.08 , of the intercepted arc. The $\log O$ from Table XXI. is the \log of $\frac{1}{2} \rho(1+n)^{2}$, employed in the computation of heights by the depression of the horizon of the sea, the mean value of n being 0.08 as before. By these rules the position of any number of points may be fixed; but in practice a different arrangement is frequently followed.

Suppose a parallel to the meridian of Edinburgh and to its perpendicular to be drawn through each station, we have the bearings and distances of the other stations from such parallels, calculated by means of a right-angled plane triangle, of which the distance or hypotenuse, and the bearings or one angle, are given, to find the other two sides. Thus, let k be the distance, m the azimuth, and $:$ the spherical excess, we bave strictly a triangle deviating slightly from a right-angled triangle, when the spherical excess is applied, but in all ordinary cases of practice the latter may be safely omitted. Now, if x be the distance from the parallel to the perpendicular on the meridian in feet, y the distance from the parallel to the meridian also in feet, introducing f , we have

$$
\begin{array}{ll}
\text { 1. } x=k \cos \left(m-\frac{9}{3} \xi\right) . & \text { 2. } y=k \sin \left(m-\frac{1}{3} \varepsilon\right)
\end{array}
$$

Omitting l , as is the general practice, and

$$
\begin{array}{ll}
\text { 3. } x=k \cos m . & \text { 4. } y=k \sin m .
\end{array}
$$

This may be permitted, because each determination of a point is an independent operation, and is not affected by an accumulation of errors.
23. I shall now give a general outline of the method of conducting the survey of a country or of an island on the preceding principles. In this case, it is necessary to determine
the latitude, longitude, and direction of the meridian of any convenient point A, as has already been shewn, with reference to a side of one or more of the triangles, such as $b \mathrm{AB}$, or $c A C, \& c$. It will then be necessary to throw a series of judiciously chosen triangles over the surface of the island and adjacent islets as may be near its coasts, such as ABC, CBG, \&c., so as to embrace the chief features of the whole island. These points must next be referred to the principal meridian by means of perpendiculars let fall from each point upon it, thus forming the abscissæ $+\mathbf{X},-\dot{X}, \& c$. to the

south and north of the point A, and ordinates parallel to the perpendicular to it $+\mathrm{Y},-\mathrm{Y}, \& \mathrm{c}$. to the west and east of the same meridian. These are represented by $A a, A b$, \&c. and $\mathrm{D} a, \mathrm{~B} b, \& \mathrm{c}$. by drawing temporary parallels to $+\mathrm{X},-\mathrm{X}, \& \mathrm{c} .+\mathrm{Y},-\mathrm{Y}, \& \mathrm{c}$. throughout the whole compass of the survey; those abscissæ to the south of A being conditionally reckoned positive, those to the north negative; while those ordinates to the east of A are considered negative,
and those to the west positive. If a distance as $A B$ cannot be deduced from an adjacent survey with sufficient precision, then a fundamental base in some convenient situation must be measured with great care, and connected with some of the sides trigonometrically, from which the sides of the whole series of triangles must be deduced by calculation, as formerly shewn. This is, for the sake of distinction, called the primary triangulation, in which the sides of the triangles extend from about 30 to $\cdot 50$, or even occasionally to 100 miles. These larger triangles are next broken down into a smaller class, called the secondary, whose sides are limited to about 10 or 15 miles, in which the angles may be measured with somewhat inferior instruments. The intermediate points are then filled in by the five-inch theodolite, the surveying compass, and the chain, which may be called the tertiary triangulation, and concluding process.
24. In a similar manner may a survey of the adjacent coasts of a strait, firth, or river, be completed, and the bearings and distances of corresponding points on opposite sides be laid down, whether they be.visible from each other or not. This may be readily done in various ways, one of which is, to run two parallels or two meridians of known distance from each other, as may be most convenient under given circumstances, and, by finding the position of each station on its own meridian, that is, its distance on the meridian from a given point in it, and the perpendicular from it upon that meridian, then these will afford the means, by the solution of a triangle, to find the bearings and distances of all or any of them, in such directions as it may be thought necessary or convenient to lay down soundings, leading marks, dangers, \&c. ; by which means the nautical surveyor will be enabled to complete his chart in a satisfactory manner.

Let NS, $N^{\prime} \mathbf{S}^{\prime}$ be the two conventionally chosen meridians by one or more surveyors, whose operations embrace the opposite shores of a river or strait, where it is possible and safe to have the necessary piles and staffs erected on shore, then the perpendicular distance HQ being found by

observations taken on purpose, the points A, C, E, G; $\mathrm{H}, \mathrm{I}, \mathrm{L}, \mathrm{O}, \mathrm{P}$, may be referred to their respective meridians NS, N'S', as in the preceding figure. By the solution of the right-angled plane triangle $H Q A$, right-angled at Q , having AQ, QH given, the angles $\mathrm{QAH}, \mathrm{AHQ}$ may be found, together with the side AH. Hence the angle IHA may be found, consequently with the sides IH, HA, and the contained angle IHA, the side IA may be found whether the point A be visible from H and I or not. Now the angle CAQ being known, and IAQ having been found by computation, the angle CAI becomes known. Whence, with the given sides IA, AC, and the contained angle IAC, the side IC may be determined.

It is clear that this method, combined with others easily deduced, may be followed through the whole series; from which the form and contour of the shores and distances on which soundings, dangers, \&c. should be placed or laid down on a chart are readily inferred. Should the survey be carried on in a foreign country, or barbarous shores, where, from danger, the necessary marks cannot be safely erected on shore, the masts of lighters, boats, and barges, properly secured, may be used as signals, especially if they have polished frusta of cones of zinc-plates, or sheets of block-tin fixed to the mast-head. .These may have the greater diameter about nine inches, the less six, and the height twelve, or in these proportions nearly, greater or less according to the distance. These will reflect the sun's image readily to the observer, even in thick weather, whence the angles will be obtained in an easy and satisfactory manner, when the observer and the objects are in a proper position, the time of which must be estimated and carefully watched.

If the lines of reference assumed are parallels of latitude, they will continue equidistant, but if meridians, they will converge towards the pole, and diverge towards the equator, and the distance between them will vary as the radius of the parallel. In nice operations of considerable extent, this variation cannot be neglected, though in those of smaller magnitude, it will be so inconsiderable, as, in ordinary circumstances, to be of little consequence. To take this into account when thought necessary, let R be the radius of curvature of any parallel whose latitude is l,

$$
\begin{equation*}
\mathbf{R}=\frac{a \cos l}{\left(1-e^{2} \sin ^{2} l\right)^{\frac{1}{2}}}=a \cos l\left(1-\varepsilon \sin ^{2} l\right) \tag{26}
\end{equation*}
$$

Whence, by computing R for the parallels of l and l^{\prime}, the distance at l may be reduced to that at l^{\prime}.
25. If, however, a parallel to the primary meridian be assumed, the operation will be more simple, as it will be unnecessary to compute the convergence in feet, or their distance at different latitudes, while the latitudes, longitudes, and azimuths may still be readily found by the preceding rules, and this is the method generally adopted.

Let $\mathbf{X X}$ be the meridian passing through the Observatory of Edinburgh A, YY a perpendicular to it, $x x, x^{\prime} x^{\prime}$, \&c. parallels to XX, passing through the stations, B Bencleugh, C Bencampsie, D Benlomond, E Goatfell, E Cairn Aird in Islay, and K Kellylaw in Fife. Hence there are formed the triangles $\mathrm{ABC}, \mathrm{BCD}, \mathrm{DCE}$, and EFD, which are treated as already directed, pages $5,6, \& c$. Having determined the bearing of Bencleugh, or angle BAX $=\alpha$, and the distance $\mathrm{AB}=k$, there may be found $\mathrm{A} a=-x$ and $\mathrm{B} a=+y$, and so on to the last triangle AFd; from which the absciss $\mathrm{Ad}=+x$, and $\mathrm{Fd} d=+y$ are obtained from a combination of all the intermediate triangles computed in a similar manner, and the results are stated in a table.

Though the signs in the following examples are those employed by many engineers, especially on the Continent, yet in my opinion it would probably be better to make those
of x positive when they increase the latitude, and negative when they diminish it. The lines $x x, \& c$. being all parallel to XX, are therefore, it must be recollected, not meridians. The latter meet at the poles, and consequently are inclined to one another at certain angles. Thus the meridian $n s$ is inclined to XX at an angle $n \mathrm{~F} x^{\prime \prime \prime \prime}$ of $2^{\circ} 34^{\prime} 17^{\prime \prime}$, which is called the convergence of the meridians, Δz, and varies with the latitudes and difference of longitude as computed by formula (6), page 37, and recorded for each station in the table, if thought necessary. It must be properly applied to the bearings, such as BAa, so as to get the bearing of \mathbf{A} from \mathbf{B}, called technically, especially by marine surveyors, the back bearing.

Having established these general principles, we shall now illustrate the whole by practical examples. By our operations at Inchkeith, in latitude $56^{\circ} 1^{\prime} 59^{\prime \prime} .82 \mathrm{~N}$., longitude $12^{\mathrm{m}} 32^{\mathrm{s}} \mathrm{W}$., we have found that Edinburgh Observatory bears $\mathrm{S} 18^{\circ} 43^{\prime} 7^{\prime \prime} .24 \mathrm{~W}$., distant 30272 feet, it is therefore required to find the latitude and longitude of Edinburgh Observatory, and thence the position of the Trigonometrical Survey Station, in order to connect these triangles with it, so that the results in our examples may be comparable with those in the survey. It must be observed that Cairn Aird was not observed from Goatfell, and that I merely computed the bearing and distance from the approximate latitudes and longitudes by Ivory's formula, as given in my Mathematical -and Astronomical Tables. Consequently these results are to be considered as approximative only.*

[^5]

These being points pretty well known, their latitudes and longitudes will therefore turn out, by a geodetical computation, the same nearly as stated above.

This operation is performed by the formulæ given at page 37 , or the subsequent practical rules, by the aid of the Tables XIX., XX., XXI., XXII., and XXIII. ; for the method of using which tables, their explanation must be consulted.

$$
\begin{aligned}
& \frac{1}{2}\left(l+l^{\prime}\right)=55^{\circ} 59^{\prime} 38^{\prime \prime} \quad \log \mathrm{M}=7.9937224 \lambda \text { gives } \log \mathrm{P}=7.9928141 \\
& z=1843 \quad 7.24 \cos \quad 9.9763985 \text { sine } \quad 9.5063992 \\
& \mathrm{~A}=30272 \text { feet } \log 4.4810411 \text {. . } 4.4810411 \\
& m^{\prime \prime}=-0^{\circ} \quad 4^{\prime} 42^{\prime \prime} .59 \log \overline{2.4511620} p^{\prime \prime}=1^{\prime} 35^{\prime \prime} .6 \log 1.9802544 \\
& l=\begin{array}{lll}
56 & 1 & 59.82
\end{array} \\
& \lambda=\begin{array}{llll}
55 & 57 & 17.23
\end{array} \\
& r^{\prime \prime}=\text { - } 0.03^{*} \\
& l^{\prime}=555717.20 \text { secant } 0.2519306 \\
& \Delta p=0 \quad 250.68 \mathrm{log} \text {. } 2.2321850
\end{aligned}
$$

$$
\begin{aligned}
& z=\quad 1843 \quad 7.24 \\
& m^{\prime}=\mathrm{N} 184045.75 \mathrm{E} \text {. }
\end{aligned}
$$

\footnotetext{

* This correction, $\boldsymbol{r}^{\prime \prime}$, may be readily taken from Table XXIII. in general. It may also be computed by the formula (25), page 38.

which is always emall, when the difference of longitude is not great.

Hence l^{\prime}, the latitude of Edinburgh Observatory, is $55^{\circ} 57^{\prime} 17^{\prime \prime} .20 \mathrm{~N}$., longitude $\mathrm{L}=3^{\circ} 10^{\prime} 46^{\prime \prime} .68 \mathrm{~W}$., and the bearing of Inchkeith light from Edinburgh Observatory, or m^{\prime}, is $\mathrm{N} .18^{\circ} 40^{\prime} 45^{\prime \prime} .75 \mathrm{E}$., agreeing with the result in pages 33,34 . Hence, as is stated there, from the Trigonometrical Survey Station, near the pillar in the Observatory,

Inchkeith Light bears	
Angle, Inchkeith, Calton, Bencleugh,	731629.28
Bencleugh bears from Calton Station	N. 543536.28 W.
Angle, Bencleugh, Calton, Bencampsie,	284326.47
Bencampsie bears from Calton Station	N.83 79 8.75 W
Bencleugh bears from Calton	N. $54{ }^{\circ} 35{ }^{\text {a }} 36.28 \mathrm{~W}$.
Benlomond, Calton, Bencleugh,	183657.00
Benlomond bears from Calton	N. 731233.28 W.
Also, by observation, Kellie Law bears	
from Calton Station	N. 37234.00

With the distances in feet from the Calton to these different points, their latitudes and longitudes may be found in the manner just shewn.

From the Trigonometrical Survey Station on the Calton Hill, then, there will be obtained

1. Kellie Law bears N. $3^{\circ}{ }^{\circ} \quad 2{ }_{2}^{\prime} \quad$ " 4.00 E. distant 135083.5 feet.
2. Bencleugh bears N. 543536.28 W . distant 146334.6 feet.
3. Bencampsie bears N. 8319 2.75 W. distant 196909.0 feet.
4. Benlomond bears N. 731233.28 W. distant 308307.6 feet.

Though the preceding data are sufficient to fix the positions of the respective points recorded, yet we shall treat the whole in a systematic manner as a small arc of a parallel across the country, in order to exemplify the method of conducting such operations, and deducing the results successively from each other.

Commencing at the Trigonometrical Survey Station on
the Calton Hill, fixed by our previous deductions, we shall now determine the positions of the places recorded above, beginning with that of Kellie Law.

This preliminary step is only an approximation to the middle latitude, or $\frac{1}{2}\left(l+l^{\prime}\right)$, in order to get the argument to take the logarithm of the factor M from Table XIX. for converting feet on the surface of the earth into seconds of arc, to determine l accurately when l^{\prime} is known.

$$
\begin{aligned}
& \frac{1}{2}\left(l+l^{\prime}\right)=5{ }^{\circ} 6 \text { ' }^{\prime} \quad \mathbf{6}^{\prime \prime} \quad \log \mathrm{M}=7.9937149 \quad \lambda \text { gives } \log \mathrm{P}, 7.9928071 \\
& m=3723 \quad 4 \cos .9 .9001374 \operatorname{sine} \text {. . } 9.7833033 \\
& \mathrm{~A}=135083.5 \log \cdot 5.1306020 \text { • } 5.1306020 \\
& m^{\prime \prime}=+01^{\prime} 73^{\prime \prime} 7.92 \log \cdot \overline{3.0244543} p^{\prime \prime}=1^{\prime} 326.7 \log \overline{2.9067124} \\
& l^{\prime}=555717.20 \\
& \lambda=561455.12 \\
& r^{\prime \prime}=\text { - 2.36* } \\
& l=561452.76 \text { secant } 0.2552382 \\
& \Delta p=-0 \circ 2411.95 \mathrm{E} . \log \cdot \overline{3.1619506} \\
& \mathrm{~L}=31046.68 \mathrm{~W} . \frac{1}{2}\left(l+l^{\prime}\right)=56^{\circ} 6^{\prime} 4^{\prime \prime} .98 \quad \sin 9.9190916 \\
& L^{\prime}=\overline{24634.73} \mathrm{~W} . \Delta z=+0 \frac{0}{20}{ }^{5 \prime} .15 \quad \log \overline{3.0810422} \\
& m=\mathrm{N} .37234 .00 \mathrm{E} \text {. }
\end{aligned}
$$

Bearing of Calton, or $z=\mathrm{S} .3743$ 9.15 W. from Kellie Law.

$* \log p^{\prime \prime} \times 2=$	\cdot	\cdot	\cdot	\cdot	\cdot
$\log \frac{1}{2} \sin 1^{\prime \prime}=$	\cdot	\cdot	\cdot	\cdot	\cdot
$\lambda=56^{\circ} 15^{\prime} \tan$	\cdot	\cdot	\cdot	\cdot	\cdot
$r^{\prime \prime}=-2^{\prime \prime} .36 \log$	\cdot	\cdot	\cdot	\cdot	\cdot

Bearing of Calton, or $z=$ S. 554 45.41 E. from Bencleugh.
In the same manner may the computations of the positions of the other points be performed.

We shall, however, here determine the position of Bencampsie from Bencleugh, and then that of Benlomond from Bencampsie, whence, in a similar manner, may any number of points be fixed in succession.

Angle, Calton, Bencleugh, Bencampsie $1005 \quad 3343.68$ Calton bears from Bencleugh S. $55 \quad 445.41 \mathrm{E}$.

Bencampsie from Bencleugh bears . S. 502858.27 W. distant 98240.3 feet.
3. Constant logarithm 5.91463
$\alpha=50^{\circ} 29^{\prime}$ cosine 9.80366
$\mathrm{A}=98240.3$ feet \log. 4.99229
$\begin{array}{cc}\frac{1}{2}\left(l-l^{\prime}\right) & =-\quad \begin{array}{c}5^{\prime} .1 \mathrm{~S} . \log \\ l=56 \\ 11.1 \mathrm{~N} .\end{array} . \quad . \quad . \quad . \quad . \quad 0.71058\end{array}$
$\frac{1}{\frac{1}{2}}\left(l+l^{\prime}\right)=56 \quad 6.0 \quad \log \mathrm{M} 7.9937150 \log \mathrm{P} \quad . \quad 7.9928126$

Bearing of Bencleugh, $Z=N . \overline{501031.45} \mathrm{E}$. from Bencampsie.
Angle, Benlomond, Bencampsie, Bencleugh, by
observation, is
Bencleugh from Bencampsie bears . . N. 501031.45 E.
Benlomond from Bencampsie bears . . N. 5712 9.88 W.
4. Constant logarithm 5.91463
$\alpha=57^{\circ} 12^{\prime}$ cosine 9.73377
$\mathrm{A}=119569$ feet log 5.07762
$\begin{array}{rr}\frac{1}{2}\left(l-l^{\prime}\right)=0^{\circ} \quad 5^{\prime} .3 \\ l^{\prime}=56 & 0.8\end{array}$
$\frac{1}{2}\left(l+l^{\prime}\right)=56 \quad 6.1 \quad \log M=7.9937150 \log P \quad . \quad=7.9928085$
$m=57^{\circ} 12^{\prime} 9^{\prime \prime} .88 \cos \quad 9.7337331$ sine . 9.9245855
$\mathrm{A}=119569$ feet $\log \quad 5.0776186 \mathrm{log} \quad$. 5.0776186
$m^{\prime \prime}=+0^{\circ} 10^{\prime} 38^{\prime \prime} .36 \log 2.8050667 p^{\prime \prime}=16^{\prime} 28^{\prime \prime} .6 l 2.9950126$
$l^{\prime}=56 \quad 0 \quad 49.74$
$\lambda=5611 \quad 28.10$
$r^{\prime \prime}=$ - 3.54
$l=561124.56$ secant . . . 0.2545829
 $m=57 \quad 12 \quad 9.88$

Bencampsie bears, or $z=S .573644$. 53 E. from Benlomond. The following are the azimuths reckoned from the south
throughout the circle, and the latitudes and longitudes of the preceding stations in pairs, the longitude west being marked +, east -.*

Names of Stations.	Azimath.	Latitude.	Longitude.
1. Calton Station,	$217{ }^{2} 3134.00$		+ $+{ }^{\circ}{ }^{\prime} 10{ }^{\prime \prime} 46.68$
2. Kellie Law,	$\begin{array}{lll}37 & 43 & 9.15\end{array}$	561452.76	+24634.73
3. Calton Station,		${ }_{5}^{5} 5155^{\prime} 71717.20$	+ $+3{ }^{1} 10{ }^{\prime \prime} 46.68$
4. Bencleugh,	3045514.59	$\begin{array}{llll}56 & 11 & 7.87\end{array}$	+3 4554.77
5. Bencleugh,		${ }_{50}^{56} 111787$	
6. Bencampsie, .	2301031.45	$56 \quad 0 \quad 49.74$	+4 888.28
7. Bencampsie,	$\begin{array}{lll}57 & 12 & \text { ¢".88 }\end{array}$	$\begin{array}{cccc}56 & \prime & \prime \prime \\ 50\end{array}$	+ $+8 \times 8$
8. Benlomond,	3022315.47	561124.56	+43744.90

In the preceding table, the azimuth opposite Calton signifies that Kellie Law bears $217^{\circ} 23^{\prime} 4^{\prime \prime} .00$ from the south towards the west round the circle, and conversely from Kellie Law the Calton bears S. $37^{\circ} 43^{\prime} 9^{\prime \prime} .15 \mathrm{~W}$., and so on of the rest.
26. In some cases the eastings and westings, and northings and southings, are put down, as already remarked, as co-ordinates, and from these the latitudes, longitudes, and azimuths, are determined. This gives some advantages and some disadvantages, and therefore may or may not be practised at the option of computers. They are tabulated in the following manner, the azimuths being all referred to the meridian of Edinburgh.

No.	$\boldsymbol{\alpha}$	\boldsymbol{x}	$\mathbf{L o g} x$.	y	$\log \boldsymbol{y}$.
1		-107334.5	5.0307394	+ 82017.3	4.9139053
2	N. 543536.28 W .	- 84782.6	4.9283063	+ 119271.7	5.0765973
3	N. 8319 2.75 W.	-22914.0	4.3601014	+ 195571.3	5.2913050
4	N. 731233.28 W.	-89063.0	4.9496976	+ 295163.3	5.4700623

[^6]From the co-ordinates in this table the positions may be fixed as before, and all referred to the same meridian. For an exemplification of this, see my Mathematical Tables. To extend right-angled triangles in this manner by parallels to the primary meridian, however, should not be carried too far. To avoid this, a new meridian may be assumed at the distance of every two or three degrees of longitude.

The method of measuring an arc of the meridian may be readily understood from the figure page 41. Suppose the latitude of the point \mathbf{A} to be accurately determined, and the azimuths of the sides of the triangle ABD in reference to the meridian XX^{\prime}, then by the perpendiculars $\mathrm{D} a, \mathrm{~B} b, \mathrm{C} c$, $\& c$., the parts $\mathrm{A} a, a b, b c, \& c$., may be found, the sum of which will be the total arc $\mathrm{A} h$; or by the intersections α, $\beta, \gamma, \delta, \& c$. , the portions $\mathrm{A} a, a \beta, \beta \gamma, \& c$. , may be found, from the sum of which arises A h, the whole arc. Now the latitude of the point h being likewise determined, and the azimuths of the sides $h \mathrm{H}, h \mathrm{~F}$ being also obtained as a verification of those derived from the other extremity at A, the length of the whole arc A h in feet with its corresponding arc in the heavens, the difference of latitude, become known, from which the length of a degree at the middle latitude will be readily found by dividing the extent of the arc in feet by that of its corresponding are in degrees.

In measuring an arc of the meridian, if the perpendicular I h, fig., page 41, be small, the points I and h may be considered as nearly on the same parallel of latitude; but if it be somewhat considerable, h is not upon the same parallel with I, the difference between which is the small arc of the meridian λl, fig., page 37 , computed from the formula

$$
\begin{equation*}
r^{\prime}=p^{\prime \prime 2} \frac{2}{2} \sin 1^{\prime \prime} \tan l \tag{27}
\end{equation*}
$$

in seconds of arc. This formula may be transformed into
another, giving the reduction in feet instead of seconds, and it then becomes

$$
\begin{equation*}
r=\frac{1}{2} \sin 1^{\prime \prime} \mathrm{M} \tan l \sin ^{2} z \mathrm{~A}^{2} \tag{28}
\end{equation*}
$$

when z and A are given, or when $\boldsymbol{p}^{\prime 2}$ is given,

$$
r=\frac{1}{2} \sin 1^{\prime \prime} p^{\prime \prime 2} \mu \tan l \quad . \quad . \quad . \quad . \quad \text { (29) }
$$

in which μ is the reciprocal of M , readily obtained by using the arithmetical complement of $\log M$ in the computation, while $\boldsymbol{p}^{\prime \prime 2}$ is the square of the perpendicular arc in seconds, found by \dot{a} previous part of the computation, and l the latitude.

$$
\text { Constant logarithm }=\log \frac{1}{2} \sin 1^{\prime \prime}=4.384545 .
$$

Since the point I is always farther from the equator than the point h, the foot of the perpendicular from it upon the meridian, this correction must be applied to reduce h to the same parallel as I, and must be added to the arc of the meridian, when the point I is at the end nearest the equator, but subtracted, as in this case, when it is farthest from it.

Examples-1. By the Trigonometrical Survey, volume ii. p. 56, giving an account of the measurement of an arc of the meridian between Dunnose and Clifton, the distance, I h, of the station at Clifton is 4770 feet from the meridian of Dunnose, $\mathbf{X X '}^{\prime}$, on an arc perpendicular to it, in the latitude of $53^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{N}$. nearly; required the correction λl, fig., p. 37, of the meridian arc A h, fig., p. 41, in feet?

Here, in reference to formula (28), $l=53^{\circ} 28^{\prime} 30^{\prime \prime}$, and $\mathrm{A} \sin z=4770$ feet;

Whence $\frac{1}{2} \sin 1^{\prime \prime}, \log$	4.384545
Log M (Table XIX) to $l=53^{\circ} 28.5$	7.993903
$l=53^{\circ} 28^{\prime} 30^{\prime \prime}$ log tangent	0.130395
Log $\mathrm{A}^{2} \sin ^{2} z=2 \log$ of 4770 feet	7.357036
$r=-0.7343$ foot, \log	9.865879

This reduction being required at the end of the arc farthest from the equator, must be subtracted from the arc between the perpendiculars, to reduce it to that between the parallels.

From one computation, the distance between the perpendiculars, page 55 of Trig. Survey is 1036334.40 feet By another, page 57, it is . . . 1036333.90
Mean of these two 1036334.15
But the zenith-sector was placed 6.5 feet south of the theodolite station at Dunnose, and 3.5 feet south of the station at Clifton, which increases the arc by 3 feet, their differ-ence ; whence, by applying these corrections, we have

supposing the trigonometrical computations in the survey to have been accurately performed.

The length stated in the survey, in which this reduction is neglected, is 1036337 feet, that does not differ materially from the preceding result, on account of the smallness of the perpendicular arc, and for that reason was probably omitted.
2. The same omission in the measurement of the French arc of the meridian between Montjouy and Formentera would have produced an error of 169.88 French toises, on account of the magnitude of the perpendicular arc from Formentera on the meridian of Paris, had it not been counteracted partly by an opposite error, arising from the insufficiency of a formula of Delambre, as there employed, which is given in the third volume of the Base du Système Métrique, page 4, illustrated by a numerical example, page 190, producing an
error of 100.07 toises, with a contrary sign. The difference of these two make on the whole an error of 69.81 toises in the results of the original commission, published in the Connaissance des Tems for 1810. This error was first detected by M. Puissant, and has been finally verified by a new commission lately appointed for that express purpose. This correction ought, therefore, hardly in any case to be neglected. M. Puissant, however, shews that Delambre's formula* is quite accurate when the convergence of the meridians, $c^{\prime \prime}$, is taken into account, or if, instead of z, the azimuth simply, $\left(z+c^{\prime \prime}\right)$ be employed. It is certain that Delambre did, in some instances, understand the formula in this sense ; but it appears probable that he had not attended to it in some manuscript instructions communicated by him to the commission of 1808 .

To avoid any difficulty from this cause, it may be recommended, in general, to trace the meridian arc through a continued series of triangles, so that the extremities of that arc may commence and terminate in the vertices of the first and last triangle, as nearly as may be convenient. If not, the small correction derived from this formula must not be neglected:

It would extend this paper too much to enter at length into this subject, which may be seen more fully developed in the Introduction to my Mathematical Tables.

In Marine Surveying, a table of meridional parts is generally required to one or two places of decimals, and in cases of great accuracy they should be used for a spheroid of about $\frac{1}{300}$ of compression. If the reduction of the latitude from Table XVI. be subtracted from the apparent or observed latitude, the meridional parts answering to the

$$
* d l=-\mathrm{A} \cos z+\frac{1}{2 r} \mathrm{~A}^{2} \sin ^{2} z \tan l+\frac{1}{6 r^{2}} \mathrm{~A}^{3} \sin ^{2} z \cos z\left(1+3 \tan ^{2} l\right) \text { in feet. }
$$

remainder or geocentric latitude, will be those on the spheroid. I generally, however, prefer the following formula, in which the first term gives the meridian parts on the sphere, and the remaining terms give the corrections to reduce the meridian parts on the sphere to those on the spheroid of $\frac{1}{300}$ of compression. Let $\mathrm{P}=$ the meridian parts on the spheroid to l, the observed latitude, then

$$
\begin{align*}
\mathrm{P}= & 7915^{\prime} .705 \log \left\{\log \tan \left(45^{\circ}+\frac{1}{2} l\right)-10\right\} \\
& -22^{\prime} .9182 \sin l+0^{\prime} .0127 \sin 3 l-\& c . \tag{30}
\end{align*}
$$

$\log 7915.705=3.8984896, \log 22^{\prime} .918=1.360181$, and

$$
\log \sigma^{\prime} .0127=\overline{2} .10380
$$

Example 1. Required the meridian parts to latitude $55^{\circ} 30^{\prime}$, both on the sphere and spheroid?

1. Constant log $45^{\circ}+\frac{1}{2} l=72^{\circ} 45^{\prime}$	2. Constant log $\sin l=$
$\begin{aligned} & 1 \text { st term }=+4020^{\prime} .60 \log 3.60429082 \mathrm{~d} \text { term }-18^{\prime} .89 \log -1.276175 \\ & 2 \mathrm{~d} \text { term }=-18.89 \end{aligned}$	
3 d term $=+0.00$	3. Constant $\log \quad+\quad+8.10380$ $\operatorname{Sin} 3 l \quad . \quad . \quad+9.36818$
$\mathrm{P}^{\prime} \cdot=4001.71$	
	3d term $+0.003 \mathrm{log}+7.47198$

Hence the meridian parts for latitude $55^{\circ} 30^{\circ}$ are $4020^{\prime} .60$ (the first term) on the sphere, and 4001.71 on the spheroid of $\frac{1}{300}$ of compression.

Ex. 2. Required the meridian parts for latitude $56^{\circ} 30^{\prime}$?
Ans. On the sphere 4127.90
On the spheroid, or $\mathrm{P}=$. . . 4108.80
In this way the meridian parts may be computed to every degree and minute throughout the extent of the survey. Now, when the proper scale is chosen for a degree of longitude, the differences of the meridian parts for each degree, \&c., throughout the extent of the survey from the same
scale, will give the graduation of the scale of latitude. Thus, $\mathbf{P}-\mathbf{P}^{\prime}=4108^{\prime} .80-4001^{\prime} .71=107^{\prime} .09=1^{\circ} 47^{\prime} .09$ to be taken from the scale selected for longitude, to give the extent of a degree of latitude, between the latitudes $55^{\circ} 30^{\prime}$ and $56^{\circ} 30$, on the terrestrial spheroid.

In Nautical Surveying it is sometimes convenient or necessary to find the distance of a point near the horizon of the sea by its observed depression. An imperfect solution of this problem is given in Horsburgh's edition of Mackenzie's Marine Surveying, section iv., by considering the triangle right angled, and omitting the effects of terrestrial refraction.* For this purpose let H be the obtuse angle near the horizon, formed by the line from the eye of the observer to that point, and another line from the centre of the earth to the same point, \mathbf{D} the observed depression, M the logarithmic modulus, r the earth's radius, and h the height on which the depression is taken, then making $\log \frac{M}{r}=\overline{8} .317198$, when r is the mean radius of the earth, the following formulæ may be readily investigated.

1. $\log \sin \mathrm{H}=\log \cos \mathrm{D}+\frac{\mathrm{M} h}{r}$.
2. $\frac{1}{2}\left\{\mathrm{D}-\left(\mathrm{H}-90^{\circ}\right)\right\}=\mathrm{A}^{\prime \prime}$; also $\alpha^{\prime \prime}=0.84 \mathrm{~A}$ and $\alpha^{\prime \prime}=\frac{1}{3} \alpha^{\prime \prime}$.
3. $\log \mathrm{K}=\log \operatorname{cosec}\left(\mathrm{D}-a^{\prime \prime}\right)+\log \cos \left(\mathrm{D}+\alpha^{\prime \prime}\right)+\log h$.
4. $\operatorname{Sin} \frac{1}{2} H=\left\{1 \pm \sec D, \sin \left(D+D_{\imath}\right) \sin \left(D-D_{\imath}\right)\right\}^{\frac{1}{2}}$.

In the last formula $\mathrm{D}-\mathrm{D}$, is the difference of the depression of the given point D and that of the horizon D , , which difference may be measured with a sextant, while the depression of the horizon may be computed by the usual formulæ, and then D , and $\mathrm{D}-\mathrm{D}$, become known without the

[^7]employment of an altitude-circle on shore, and in this case the upper sign must be used.

Example. Let the observed depression of a given point from the top of Goatfell, in the island of Arran, $\mathrm{D}=2^{\circ} 18^{\prime} 8 .^{\prime \prime} 4$ by an astronomical circle, and the height h of the circle above the level of the sea 2861.5 feet; required K , the chord measuring the distance of the point observed from the station on which the observation was taken?

the first approximation, which, in moderate distances, will in general be sufficient.

For a second approximation, the following method may be employed, in which $\log \mathrm{K}$ is that previously found.
5. $\log a^{\prime \prime}=$ Const. $\log 7.617089+\log \mathrm{K}$.
6. $\log \alpha^{\prime \prime}=$ Const. $\log 6.896930+\log \mathrm{K}$.

Const. logs, 1st	7.617089	2 d	6.896930
Log K	4.868806		4.868806
$a^{\prime \prime}=5^{\prime} 6^{\prime \prime} .1 \mathrm{log}$	2.485895 ,	$\alpha^{\prime \prime}=58^{\prime \prime} .3 \mathrm{log}$	1.765736

Another repetition, using this last value of K, would not produce any sensible change in its value, and it may therefore be reckoned correct.

In making use of formula (4), we suppose $D-D$, the angle between the point whase distance is required and the visible horizon, to be measured with a sextant, and found to be $1^{\circ} 25^{\circ} 29^{\prime \prime} .7$.

To compute the dip we have

Another repetition, as shewn in last example, gives $K=73900$ feet, the true value, as before.

The former method is recommended when the observer has a good altitude and azimuth circle ; the latter, when he has a sextant or reflecting circle only, as is frequently the case with nautical surveyors.
27. Trigonometrical Levelling is an operation which generally accompanies Trigonometrical Surveying, because the exact situation of a given point on the earth's surface is accurately fixed by the three co-ordinates, latitude, longitude, and elevation above the mean level of the sea. The triangle formed in a vertical plane above the earth's surface in this operation is called a hypsometrical triangle. It is formed by the chord of the terrestrial arc comprised between the verticals of the two stations where the reciprocal zenith distances have been observed, by the straight line which joins the two points of observation and the difference of level $d h$. When reciprocal and simultaneous observations are made, that is, when observations are made from two different points on one another at the same time, the results are esteemed the most accurate, as the effects of refraction at the two places is determined by observation. In this case, let δ be the observed zenith-distance at the one place, and δ^{\prime} that at the other, less than the former, while C is the angle contained by two vertical lines drawn from the surface of the earth to its centre ; then the difference of altitude will be found by the following formulæ.

$$
\begin{align*}
d h & =\mathrm{K} \sin \frac{1}{2}\left(\delta-\delta^{\prime}\right) \sec \frac{1}{2}\left(\delta-\delta^{\prime}+\mathrm{C}\right) \tag{1}\\
& =\mathrm{K} \tan \frac{1}{2}\left(\delta-\delta^{\prime}\right) \text { very nearly. } \tag{2}
\end{align*}
$$

But it frequently happens that reciprocal and simultaneous observations cannot be observed; then, in that case, if n be the coefficient of terrestrial refraction,

$$
\begin{align*}
d h & =\mathrm{K} \sec \frac{1}{2} \mathrm{C} \cot \{\delta+(n-0.5) \mathrm{C}\} \tag{3}\\
& =\mathrm{K} \cot \{\delta+(n-0.5) \mathrm{C}\} \text { very nearly. } \tag{4}
\end{align*}
$$

The same thing may be done by the following formula, in which the first part is the solution of a right-angled plane triangle, and the second contains the effects of the curvature of the earth combined with the refraction.

$$
\begin{equation*}
d h=\mathrm{K} \cot \delta+\frac{\mathrm{K}^{2}}{\rho}(0.5-n) \tag{5}
\end{equation*}
$$

in which ρ is the radius of curvature equal to the mean radius of the earth nearly, or exactly $\frac{1}{\rho}=f \sin 1^{\prime \prime}$, in which f is the factor, from Table XIX., to convert feet into seconds of arc.

To determine the height of the point of observation by the observed depression of the horizon of the sea,

$$
\begin{equation*}
d h=\frac{1}{2} \rho(1+n)^{2} \tan ^{2}\left(8-90^{\circ}\right) \tag{6}
\end{equation*}
$$

in which $\delta-90^{\circ}$ may be replaced by D , the observed depression of the horizon of the sea,

$$
\begin{equation*}
d h=\frac{1}{2} \rho(1+n)^{2} \tan ^{2} \mathrm{D} \tag{7}
\end{equation*}
$$

where $\frac{1}{2} \rho=\frac{\frac{1}{2} \mathrm{R}^{\prime \prime}}{f}$, as before.
For many practical purposes the mean value of $n=0.08$ of the intercepted arc will be sufficient, and

$$
\begin{equation*}
d h=0.5832 \rho \tan ^{2} \mathrm{D} \tag{8}
\end{equation*}
$$

or, when the depression D does not exceed a few minutes,

$$
\begin{align*}
d h= & 0.5832 \rho \sin ^{2} 1^{\prime \prime} D^{\prime 2} \text { nearly } \cdot \tag{9}\\
& \text { Constant log. of } 0.5832 \sin ^{2} 1^{\prime \prime} \pm 6.457582 .
\end{align*}
$$

The same value of n might be introduced into formulæ (4) and (5), and the former would become

$$
\begin{equation*}
d h=\mathrm{K} \cot (\delta-0.42 \mathrm{C}) \tag{10}
\end{equation*}
$$

the latter becomes

$$
\begin{equation*}
d h=\mathrm{K} \cot \delta+\mathrm{K}^{2} \cdot \frac{0.42}{\xi} \tag{11}
\end{equation*}
$$

$$
\text { and } \quad \log \frac{0.42}{\rho}=\overline{8} .302632 .
$$

These mean coefficients are, however, combined properly in Tables XXI. and XXII., corresponding to formulæ (4) and (9). By a paper in the Edinburgh New Philosophical Journal for April 1841, I have given the following formula to compute the value of n in given circumstances, and the computation may be readily performed by the aid of Table XI. and the auxiliary refraction tables.

$$
\begin{equation*}
n=\frac{\alpha r}{2 \mathrm{~B} l} \cdot b\left(\frac{1}{1+\beta\left(t-50^{\circ}\right)}\right)^{2} \cdot \frac{1}{1+\beta^{\prime}\left(r-50^{\circ}\right)}\left(0.75-\frac{f}{3 b}\right) \tag{12}
\end{equation*}
$$

$\log \frac{\alpha r}{2 \mathrm{~B} l}=$ Constant logarithm 7.57877.
This const. log. is combined with the factor $\left(0.75-\frac{f}{3 b}\right)$ in Table XI., for the use of which see the explanation of the tables.

1. To exemplify these formulæ, we find that at

$$
\begin{aligned}
& \text { Clermont Ferrand } \delta^{\prime}=\quad \text {. . . } 83 \quad 33 \quad 33.37 \\
& \text { Puy de Dôme } 8 \text {. } 963038.67 \\
& \text { ס- } \delta \text {. } 1257 \quad 5.30 \\
& \frac{1}{2}(\delta-8)=. \quad . \quad . \quad . \quad \text {. } 62832.65 \\
& \text { Also } b^{\prime}=28.839, \quad \quad^{\prime}=5 \stackrel{\circ}{2} .7 \mathrm{~F} . \quad t^{\prime}=45.14 \mathrm{~F} . \\
& b=25.383, \quad \tau=51.1 \mathrm{~F} . \quad t=48.92 \mathrm{~F} . \\
& \text { The base K in English feet log . . } 4.4875708 \\
& \text { To } \frac{1}{2}\left(l+l^{\prime}\right)=45^{\circ} 47^{\prime} \text { and } \alpha=84 \frac{3}{4}^{\circ} \log 0 \quad 7.9930870 \\
& \begin{array}{crrrrr}
\mathrm{C}= & \dot{5} & 2^{\prime \prime} .45 \\
\delta-\delta^{\prime}=12^{\circ} 57 & 5.30
\end{array} \quad . \quad \log \quad \begin{array}{l}
2.4806578
\end{array} \\
& \delta-\delta^{2}+C=\begin{array}{lll}
13 & 2 & 7.75
\end{array}
\end{aligned}
$$

the result by reciprocal and simultaneous observations, which is reckoned the most correct method ; but as we have the state of the barometer and thermometer recorded, we shall compute the same difference of level by formula (3), requiring the calculation of the value of n by Table XI.

From the sign -, this shews that Clermont Ferrand is 3487.6 feet under the summit of Puy de Dôme. We shall also determine the elevation of Puy de Dôme above Clermont Ferrand.
3. \log from Table XI. to $b^{\prime}=28.339$ and $t^{\prime}=45^{\circ} \quad 7.45175$
$r^{\prime}=52^{\circ} .7$ F. \log (Table VII.) . . 9.99988
$\begin{array}{ll}t^{\prime}= & 45^{\circ} .14 \text { F. } \log \times 2 \text { (Table VIII.) } \quad .0 .00884 \\ b^{\prime}=28.839 \quad \log \quad . & . \quad .45998\end{array}$
$\begin{aligned} & n^{\prime}=0.08327 \\ & 0.5 \log \quad . \quad . \quad . \quad . \\ & 8.92045\end{aligned}$
$-0.5=-0.5$

Agreeing almost exactly with the first solution by reciprocal and simultaneous observations, while, by the value of n computed from the formula, the results differ by about half a foot only,-a strong proof of the accuracy of the principle which I employed in its investigation.
4. To determine the coefficient of refraction by observation, we have $r=n \mathrm{C}, \mathrm{C}$ being the intercepted arc, and n the effect of refraction, a part of that arc.

But

$$
r=\frac{1}{2} \mathrm{C}-\frac{1}{2}\left(\delta+\delta^{\circ}-180^{\circ}\right) .
$$

Introducing this into the preceding equation, and it becomes by reduction,

$$
\begin{equation*}
n=\frac{180^{\circ}+C-\left(\delta+\delta^{\prime}\right)}{2 \mathrm{C}} \tag{13}
\end{equation*}
$$

Now at Puy de Dôme. $\delta=$ Clermont Ferrand $\delta=$	$\begin{array}{lll} \circ \\ 96 & 30 & 38.67 \\ 83 & 33 & 33.37 \end{array}$
$\delta+\delta=$	180412.04
$180^{\circ}+\mathrm{C}=$	$180 \quad 52.45$
$180^{\circ}+\mathrm{C}-\left(\delta+\delta^{\prime}\right)$	$0 \quad 050.41$
$0_{0}^{50.41} \mathrm{log}$	1.7025167
$2 \mathrm{C}=10 \begin{array}{llll} & 4.90 & \log \end{array}$	2.7816836
$\begin{aligned} n & =0.083336 \quad \log \\ & -0.5 \end{aligned}$	$\overline{2} .9208331$
-0.416664 log	- $\overline{1} .6197860$
Log C ; as before,	2.4806578
$v^{\prime}=-0^{\circ} 2^{\prime} \quad 6^{\prime \prime} .02 \quad \log$	-2.1004438
$\delta=963038.67$	
$\delta_{1}=962832.65$ cotangent	-9.0550213
K . . . \log	4.4875708
$d h \quad 3488.13$ feet \log	-3.5425921

Here the result is the same as before. As v^{\prime} here found agrees almost exactly with that previously determined from
the computed value of n, the computation need not be repeated. In fact, the distance is too small for the refraction to produce a very marked effect, though this example has been selected by both Puissant and Biot to test their formulx. From this, too, it appears that the refraction determined by observation is not that at either point, but a mean between them.
I shall now proceed, from Inchkeith, to determine the heights of the former points (in the preceding part of this paper) above the sea.
5. At Inchkeith, in August 1840, I found the zenith distance of the summit of the dome of Edinburgh Observatory to be $89^{\circ} 40^{\circ} 24^{\prime \prime} .45$, at the distance of 30117 feet, bearing S., $18^{\circ} 43^{\prime} 7^{\prime \prime} .24 \mathrm{~W}$., when the barometer b stood at 29.675 in ., and Fahrenheit's thermometer at $63^{\circ} .8$; what was the height of the summit of the Dome above the place of observation, and above the mean level of the sea?

$\mathbf{H}^{\prime}=377.39$ feet, the height of the summit of the dome above mean tide.
Station $\quad 26.90$ feet under the dome.
$H=350.49$ feet, the height of the axis of the circle on the cy-
lindrical stone south-west of the Observatory,
from which I took the following observations on
Bencleugh.
6. From this point the summit of Bencleugh was observed to have a zenith-distance of $89^{\circ} 22^{\prime} 41^{\prime \prime} .85$, when the barometer stood at 29.68 in . and Fahrenheit's thermometer at 62°, the middle latitude being $56^{\circ} 4^{\prime} 12^{\prime \prime} \mathrm{N}$., bearing N. $54^{\circ} 36^{\prime} \mathrm{W}$., distant 146334.6 feet ; required the height of Bencleugh above the place of observation, and also above the mean level of the sea?

In this manner the elevation of any number of points may be determined successively.

The difference of level may be found approximately with sufficient precision for many purposes by reciprocal zenith-
distances, independent of triangulation. This method is not so accurate as the preceding, but will frequently be useful where tolerable accuracy only is necessary.

From a simple investigation, when $n=0.08$, it will be found that the sum of the refractions, or

$$
\begin{equation*}
r+r^{\prime}=\frac{\xi}{}\left(\delta+\delta^{\gamma}-180^{\circ}\right) \text { nearly. } \tag{14}
\end{equation*}
$$

where δ and δ^{\prime} are the apparent zenith-distances. If C be the true angle at the centre, and c the apparent,

$$
\begin{equation*}
\mathrm{C}=c+r+r \tag{15}
\end{equation*}
$$

in which $r+r^{\prime}$ is got from formula (14), and $c=\delta+\delta^{\prime}-180^{\circ}$.
If, however, n and n^{\prime} be computed from the state of the barometer and thermometer, as has been already shewn, then

$$
\begin{equation*}
\mathrm{C}=\frac{c}{1-\left(n+n^{\prime}\right)} \tag{16}
\end{equation*}
$$

This value of C will generally be more accurate than the preceding. The difference of level will then be computed by the following formula,
$d h=2 \rho \tan \frac{1}{\frac{1}{2}} \mathrm{C} \tan \frac{1}{\frac{1}{2}}(\delta-\delta)+2 \rho \tan ^{2} \frac{1}{2} \mathrm{C} \tan ^{2} \frac{1}{\frac{1}{2}}(\delta-\delta)$
in which the first term will generally be sufficient.

From other data the value of $d h=675.5$, exceeding the preceding by 4.9 feet only.

The approximate distance may also be obtained by adding to

8. By an astronomical circle, the axis of which was 3.5 feet above the rock, the depression of the horizon of the sea from the summit of Dunii, in the Island of Iona, was $17^{\prime} 52^{\prime \prime}$, bearing about $\mathrm{S} .70^{\circ} \mathrm{W}$.; required the height of Dunii, the highest hill in Iona?

To lat. $56^{\circ} 20^{\circ} \mathrm{N}$. and $\alpha=70^{\circ} \log 0^{\prime \prime}$	6.458479
$\mathrm{D}^{\prime \prime}=17^{\prime} 52^{\prime \prime}=1072^{\prime \prime}, \log \times 2=$	6.060390
$d h=330.2$ feet, log	2.518869
$=-3.5=$ height of circle.	
$\mathrm{H}=326.7$ feet, the height of the groun	

This method is sufficient for most cases. However, as circumstances will occur where the greatest possible accuracy may be required, then $\frac{1}{2} \rho$, from Table XIX. $=\frac{\frac{1}{2} \mathrm{R}^{\prime \prime}}{f}$, in which f is the factor to convert feet into seconds, will give, when combined with $(1+n)^{2} \tan ^{2} \mathrm{D}$, the height, with all the accuracy that can be expected.

In Marine Surveying, it is seldom convenient, and often impossible, to determine the direction of the meridian by the pole-star, as has been shewn in the preceding pages; and in the practice of ordinary Surveying, such a degree of precision is unnecessary. In this case recourse may be had to
the methods recommended in pages $28,29, \&$ c., as illustrated by the following examples.

Example 1. On the 10th of July 1837, at $7^{\text {h., }}$, in latitude $7^{\circ} 31^{\prime} 20^{\prime \prime} \mathrm{S}$., and longitude $153^{\circ} 10^{\prime} \mathrm{E}$., the observed altitude of the sun's lower limb was $10^{\circ} 13^{\prime} 0^{\prime \prime}$, and at the same instant the observed distance of the sun's nearest limb from a well-defined point of land on the same level with the eye to the left of the sun was $95^{\circ} 16^{\prime} 0^{\prime \prime}$. The index-error of the former sextant was $-0^{\prime} 50^{\prime \prime}$, that of the latter $+1^{\prime} 10^{\prime \prime}$, the height of the observer's eye taking the sun's altitude being 14 feet; required the true bearing of the point of land, and the variation of the compass, when the magnetic bearing of the same point was N. $5^{\circ} 10^{\prime} \mathrm{W}$.?

Longitude in time 10	

Greenwich Mean T. 84720

Obs. Alt. 1. 1.		
Index error	- 050	Index error . . +110
Dip to 14 feet	343	Sun's semidiameter . + 1545
Semidiameter	+ 1545	
${ }^{\text {Apparent altitude }}$	104112	
True altitude	103616	

Now by the rule of the circular parts of Napier, applied to the right-angled spherical triangle $\mathrm{H} O \odot$, fig. page 28 ,
the difference of the azimuths of the sun and the object.
The sun's true azimuth may be computed by a formula similar to that for time, in page 20, thus :

To find the Azimuth.

Rule. Set down the polar distance, the true altitude, and the latitude, then find half their sum, and the difference between this half sum and the polar distance. To the log secant of the altitude add the log secant of the latitude, the \log cosine of the half sum and the \log cosine of the difference; half the sum of these four logarithms will be the log sine of half the azimuth from the meridian, to be reckoned from the south in north latitude, and from the north in south latitude.

Polar distance	$112{ }^{2} 0176$	
True altitude	103616 secant	0.007481
Latitude	73120 secant	0.003754
Sum	1302752	
Half	651356 cosine	9.622153
Difference	47620 cosine	9.832924
		19.466312
Half		9.733156
Sun's true bearing Object to left of sun	N. 652948 E .	
	953849	
True bearing of object Magnetic bearing	N. $3091 \begin{aligned} & \text { W }\end{aligned}$	
	N. 51000 W .	
Variation of compass	24591 W.	

Ex. 2. On the 1st of May 1834, in latitude $33^{\circ} 8^{\prime} 0^{\prime \prime}$ N., longitude $16^{\circ} 10^{\prime} \mathrm{W}$., the height of the eye 18 feet, the following observations were made to determine the true bearing.*

[^8]```
App. Alt. \(52{ }^{\circ}{ }^{\prime} 711\)
Correction - 39
\(\bigcirc\) 's Pol. Dist. \(75^{\circ} \boldsymbol{0}^{\prime} 10^{\prime \prime}\)
True Alt. 523632
```



Sun's bearing S. 694840 E. Reduced versine 9.515133

| Apparent altitude | 523711 | secant | 0.216738 |
| :---: | :---: | :---: | :---: |
| Apparent distance | 1114953 | cosine | 9.570399 |
| Z to the right | 1274625 | cosine | 9.787137 |

Sun's bearing . S. 694840 E.

True bearing of object S. 575745 W .
Should the object in Example 1. be not on the level of the eye, the following method of computing the angle HZ® must be employed.

and this plan must be always followed when both zenithdistances differ considerably from $90^{\circ}$, or even when it is doubtful if the object be on the same level with the eye.

Ex. 3. At Dunii Cairn, Iona, on the 21st of August 1839, in latitude $56^{\circ} 20^{\prime} 34^{\prime \prime} \mathrm{N}$., longitude in time $25^{\mathrm{m}} 34^{\mathrm{s}} \mathrm{W}$., observations were taken with an astronomical circle, and reduced as stated below.


| Polar distance | $77{ }^{4} 9$ |  |  |
| :---: | :---: | :---: | :---: |
| True altitude | - 24216 | secant | 0.000484 |
| Latitude | 562034 | secant | 0.256315 |
| Sum | . 1365152 |  |  |
| Half | 682556 | cosine | 9.565377 |
| Difference | 9236 | cosine | 9.994148 |
|  |  |  | 19.816324 |
|  | $54 \quad 2$13.5 |  | 9.908162 |


| Azimuth | S. $108 \quad 427$ W <br> $180 \cdot 0 \quad 0$ |
| :---: | :---: |
| Azimuth | N. 715533 |

The azimuth may also be determined by the formulæ in page 27.



Ex. 4. On the 11th of August 1841, at my station, in latitude $55^{\circ} 27^{\prime} 56^{\prime \prime} .74 \mathrm{~N}$. longitude, $4^{\circ} 37^{\prime} 35^{\prime \prime} \mathrm{W}$., at $4^{\mathrm{h}} 40^{\mathrm{m}} 17^{\mathrm{s}} .5$ mean time, by observations on the limbs of the sun, taken alternately above and below the central horizontal wire, and to the right and left of the vertical wire, in opposite quadrants of the diaphragm, so that the mean of all might be that of the sun's centre at the intersection of the wires in the centre of the telescope, I found the true altitude of the sun's centre, deduced from the vertical arc of my circle, to be $24^{\circ} 25^{\prime} 45^{\prime \prime}$, when the polar distance was $74^{\circ} 47^{\prime} 14^{\prime \prime}$; while, by the horizontal arc, the angle between the sun's centre and Ayr High Spire, was $2^{\circ} 52^{\prime} 23^{\prime \prime} .3 \mathrm{~W}$., distant 1152 feet; required the latitude and longitude of the spire?


In a similar way the common theodolite may be employed, and the result will be within a few minutes of the truth. Whence also the variation may be obtained by taking bearings at the same time by the needle.

## RAILWAY SURVEYING.

1. In the present times, when railways are constructing in all parts of the United Kingdom, as well as abroad, on account of their great importance and general utility, a recommendation in favour of their adoption cannot now be necessary. However evident this general proposition may be, yet it requires much caution and considerable professional knowledge, to select the lines in such a manner as to enable the country, as well as the public and shareholders, to derive the full advantage they are certainly calculated to produce. The surveyor undertaking such a work ought first to ascertain, by personal observation, the nature of the country through which it is intended to pass, with regard to its localities, its structure, and geological character. This might lead him to the choice of several lines apparently equally favourable, as far as a cursory inspection of the ground by the eye, chiefly through the medium of its lakes, rivers, and mountain-ranges, could determine.
2. In the selection of railways, too, the amount of traffic, to a certain extent, ought to regulate the nature of the construction. If there is a certainty of great traffic, the expenditure in tunnelling, cutting, embanking, and viaducts, may be very considerable, in order to improve the gradients; but if a moderate trade only is to be expected, such an expenditure must be injudicious, because it increases the charges, or diminishes the profits, of the original share-

holders, and thus, unless at the expense of the public, they must receive an inadequate remuneration for their capital. Circuitous lines, to serve inferior provincial towns, are not to be recommended, except to a limited extent, because the greatest amount of the whole traffic may be expected from the large towns at the extremities, for whose use chiefly the railway would be constructed, and through whose influence the bill for such a purpose must chiefly be carried.

The passengers between these towns would thus be compelled to pay fares for these additional miles so thrown into the railway, while, at the same time, the duration of transit would be ịncreased, by this means entailing a positive loss on the majority of the passengers, both in money and time. It would generally, therefore, be better to connect these inferior towns with the main line by short branches.

The advantages, therefore, to be derived from the use of railways, are, rapidity of transit, and economy of charge; to accomplish which, the following principles should be kept constantly in view :-
$1^{\circ}$, One of the conditions which must not be departed from in laying out great lines of railway is, that those lines may be traversed throughout their whole extent by locomotive engines ; and, in order to avoid, as much as possible, interruptions and delays, that the same engine should draw the same train.
$2^{\circ}$, Another condition is, to diminish, as far as practicable, the time of transit between two given points, by reducing the length of the railway. In this case the straight line, either horizontal or having one uniform slope, will be the most advantageous. It is this line which ought to be selected, or the nearest practicable one to it , both horizontally and vertically.
$3^{\circ}$, If two lines may be chosen equally advantageous in
these respects, then that which passes through the most populous and richest country in minerals ought to be chosen.
$4^{\circ}$, It would be a great error to suppose that the line may be lengthened circuitously ; because by that means, by getting easy gradients, the velocity will be much increased, since what is gained in velocity, it is obvious, may be easily lost in greater distance.
$5^{\circ}$, It was formerly supposed (and this hypothesis has been acted upon by many engineers) that the entire line of railway should, as nearly as possible, have one uniform slope, with very good gradients, however circuitous almost the line might be made to obtain them.
$6^{\circ}$, Now, within certain limits, this is doubtless true ; but it requires great care and considerable science to be able to determine these with tolerable accuracy in practice.
$7^{\circ}$, It has been a maxim with some engineers, that if a uniform slope is impracticable, or if it requires too great a deviation from the straight or direct line, it is necessary, at least, to endeavour to rise progressively from one extremity of the line to another, and never to ascend where it must descend again.
$8^{\circ}$, But it is clear that such views are, within certain limits, incorrect ; for, if the traction be increased by gravity, when a train or engine is impelled $u p$ an inclined plane, in proportion to the rate of rise, it will be diminished in nearly the same proportion when it descends, especially when the gradients are very good, never exceeding 1 foot in 300 , and generally much less, in which circumstance the acceleration from gravity requires no check.
$9^{\circ}$, On this principle, the loss of velocity in ascending one side of a rising ground or inclined plane will be nearly, but not exactly, compensated by the gain in descending the other, when the slopes are equal, and some aliquot part of
it regulated by the difference, if they are unequal, and this compensation will be the more nearly equal the better the slopes are, and the more perfect our engines become. In this last case, the ratio of the friction on the inclined plane to that on the horizontal plane may increase, though the total effect will be diminished.
$10^{\circ}$, Hence, in tracing a line of railway, there is no inconvenience in rising higher to redescend afterwards, so long as that does not render it necessary to extend the limit of the slopes. Thus, for example, several lines uniting two given extreme points, upon which it is admitted that the same locomotive engine draws throughout the same train, will be perceptibly equal in respect to the expense of transit, whatever be the height to which they rise or to which they descend, if their lengths be equal, and if, upon any of these lines, the steepest slopes do not surpass 1 in 200 , so as to produce an inconvenient or dangerous acceleration. Hence it appears that special care should be taken to diminish the length of the line of transit, to lower the limit of the slopes, and that it is unnecessary, for the sake of remarkably favourable gradients, to involve a railway company in extravagant expenses, in order to complete tunnels, make embankments, and construct viaducts, the interest of the money required for which frequently exhausting a considerable portion of the revenue of the speculation, and diminishing the dividends of the shareholders, who ought, in all cases, to receive a fair remuneration for the money they may have advanced.
$11^{\circ}$, To select the cheapest and most efficient line of railway, depends upon the following proposition :-To combine the distance between two given points with the gradients in such a manner as to produce the greatest effect at the least expense.

Though this proposition, in general, cannot be solved directly, yet, by attending to the preceding principles, an approximate solution may be obtained, by the aid of the tables accompanying this work, sufficiently accurate for all ordinary purposes.
$12^{\circ}$, In estimating the mean value of the gradients throughout a line, the value of each, with its proper sign, must be multiplied by its length, and the algebraical sum of the products divided by the length of the whole line, including the levels in the same measure, will be the mean value of the gradients, in which the signs of the ascents must be reckoned positive, and those of the descents negative.
$13^{\circ}$, If the force of traction obtained in this way on two lines connecting the same two extreme points be inversely as their lengths ; or if the product of the length of one line, multiplied by its force of traction, be equal to the product of the length of another line multiplied by its force of traction, the effects of those two lines would be equal, or equal tonnage would, by equivalent locomotive engines, be transported along each line in equal times. This follows from the fact, that, if the traction on a unit of the line, such, for example, as one mile, be multiplied by the whole length in miles, the product will be the total traction throughout the line, and it will express the power expended in propelling an engine throughout the whole line. Hence the relative effective powers of two lines of railway may be easily estimated, and their respective advantages and disadvantages readily determined.
$14^{\circ}$, As the length of a line of railway is one of the elements employed to compute the expense of transit, it is clear it should be as short as convenient and sound principles will admit, because it will also reduce the time of transit. It would be committing a great error to suppose
we may lengthen the line because the velocity of transport over it is great. The same principle which rendered the establishment of a railway necessary or desirable, in order to obtain a mode of transport quicker than any other, requires that the shortest lines should be sought after, and even to prefer them, when sometimes they appear disadvantageous in other respects.
$15^{\circ}$, In order to ascertain the effects of slopes, experiments have been instituted to determine the amount of tractive force necessary to propel a ton of burden on a level plane or horizontal line of a well constructed railway. This, of course, varies a little with the quality of the railway, as well as with the construction of the carriages, and depends on the total amount of friction. In general it varies from 8 lb . to 9 lb . per ton, and is therefore very generally assumed at $8 \frac{1}{2} \mathrm{lb}$. per ton, an approximation, in the present state of railway carriages, not far from the truth. Now, in one ton there are 2240 lb ., consequently, if 2240 lb . be divided by 8.5 lb ., the quotient is 264 , an abstract number, from which it is inferred that the traction on the level plane is equal to l-264th part of the weight drawn. But, by the principles of mechanics,-The weight moved upon an inclined plane, is to the power by which it is moved, as the length of the inclined plane is to its height.

Suppose, for example, that a waggon enters upon an inclined plane rising 20 feet in an English mile of 5280 feet, or 1 foot in 264 feet, it follows, from the preceding analogy, that an additional $8 \frac{1}{2} \mathrm{lb}$. will be combined with that on the level, or that twice the force will be necessary to propel the carriage with its load $u p$ this ascent at the same velocity as on the level, that is, if $8 \frac{1}{2} \mathrm{lb}$. per ton be required to propel a carriage or train of waggons at the rate of 30 miles an hour on the level, it would require double that force of trac-
tion, or 17 lb . per ton, to keep up that velocity on an inclined plane or slope rising 1 foot in 264 , or 20 feet in a mile.

It also follows, from the same process of reasoning, that a velocity of 30 miles an hour might be kept up on ascending that inclined plane, if the train of waggons carried a part of the load only. It is frequently observed that an undulating line, having considerably steep slopes, limits the load to what the locomotive engine can propel up these gra-dients,-a fact undoubtedly true. But no slopes so steep as to nearly stop the trains proceeding at the rate of 30 miles an hour on the level should be admitted on any railway, unless from unavoidable necessity, and in that case a stationary engine must be employed at those points where they may be required. In all lines where the gradients are not more than 1 in 300 , no such occurrence can take place; and to expend large sums of money on tunnels, cuttings, embankments, and viaducts, or circuitous lines for better, must be considered a useless expenditure of the public money.

Again, if the rise be 1 in 2000 , it will require an additional force of 1.12 lb . per ton, which, added to 8.5 lb ., that on the level, gives 9.62 lb ., the necessary tractive force up this inclination, similarly as before. In this way we arrive at a distinct knowledge of the exact amount of tractive power necessary to propel any load up an inclined plane, whatever be its rise per mile, or its inclination.

If, on the contrary, the train be moving down the descending plane, then the tractive force necessary on the level plane will be diminished by the effects of gravity, to keep up the same velocity on the inclined plane as on the level. Hence, if the power be constant, there will be a retardation in ascending the inclined plane, and a corresponding acceleration in descending, which will, in well-constructed railways, whose gradients do not exceed 1 in 300 , nearly
counterbalance each other. The modifications on this account may be obtained from the accompanying tables.

Indeed, absolute accuracy is hardly to be expected in such cases, since a sufficient number of experiments on all sorts of inclinations, in different circumstances, to be combined with mathematical investigations, have not yet been completed. In the first table, by Mr Barlow, I believe, though it may give a good approximation to the truth, it appears singular that there should be such disruption of the law of continuity on the descending plane at about 1 in 140. It appears somewhat strange, that a change from 1 in 140 to 1 in 160 should change abruptly the equivalent horizontal plane from 1.00 to 0.83 ; while from 1 in 160 to 1 in 180 it does not change at all, and even continues the same to 1 in 500 , while, by the experiments of Dr Lardner, he finds a complete compensation of velocity from 1 in 177 to the dead level, and there is no dangerous acceleration on inclined planes of considerable steepness, so that, after acquiring a certain velocity, the motion becomes uniform. No doubt this must be true when the friction, combined with the resistance of the atmosphere, become equivalent to the acceleration from gravity. More numerous experiments, I suspect, are yet required to ascertain the precise limits, in given circumstances, within which this compensation takes place. Though I am disposed to put greater confidence in Mr Barlow's views on most points than in Dr Lardner's; yet, in the present case, from the remarks I have made above, and what has occurred to my own knowledge, it would appear that there is some foundation for Dr Lardner's results.

On the preceding principles will be compared the relative merits of two assumed lines of railway, in which the values of the respective gradients are given in a column adjacent
to the corresponding measured distances of the slopes, $\& c$., for a passenger train of 50 tons only, by way of example.

| $\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Slopes } \end{array}\right\|$ | Character. | Measured Distance in Miles. | Gradients. | Equivalent Hor. Dist. |  | Mean <br> Hor. <br> Distance. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Forward. | Backward. |  |
| 1 | Level | 0.600 | 0 | 0.800 | 0.800 | 0.800 |
| 2 | Descent | 1.530 | 1 in 2000 | 1.484 | 1.576 | 1.530 |
| 3 | Ascent | 2.950 | 1 in 2000 | 3.227 | 2.673 | 2.950 |
| 4 | Level | 1.736 | 0 | 1.736 | 1.736 | 1.736 |
| 5 | Ascent | 6.250 | 1 in 600 | 7.450 | 5.250 | 6.362 |
| 6 | Ascent | 1.143 | 1 in 1200 | 1.251 | 1.036 | 1.163 |
| 7 | Level | 1.143 | 0 | 1.143 | 1.143 | 1.143 |
| 8 | Descent | 1.143 | 1 in 1200 | 1.036 | 1.251 | 1.163 |
| 9 | Ascent | 2.270 | 1 in 2000 | 2.483 | 2.057 | 2.270 |
| 10 | Level | 0.760 | 0 | 0.760 | 0.760 | 0.760 |
| 11 | Descent | 2.480 | 1 in 1200 | 2.247 | 2.713 | 2.480 |
| 12 | Level | 0.470 | 0 | 0:470 | 0.470 | 0.470 |
| 13 | Ascent | 8.455 | 1 in 800 | 9.639 | 7.271 | 8.455 |
| 14 | Level | 2.600 | 0 | 2.600 | 2.600 | 2.600 |
|  |  | 33.730 |  | 36.326 | 31.336 | 33.882 |
| Hence $\stackrel{\mathrm{m}}{\mathrm{m} .} \mathbf{8 3} . \mathrm{m}-33.730=0.152$ mile, or about $\frac{1}{7}$ th of a mile, the loss upon the gradients. |  |  |  |  |  |  |
| Results of Line B. |  |  |  |  |  |  |
| No. | Character. | Measured Distance in Miles. | Gradients. | Equivalent Hor. Dist. |  | Mean Hor. Distance. |
| Slopes |  |  |  | Forward. | Backward. |  |
| 1 | Level | 0.875 | 0 | 0.875 | 0.875 | 0.875 |
| 2 | Ascent | 1.000 | 1 in 528 | 1.212 | 0.830 | 1.030 |
| 3 | Level | 1.500 | 0 | 1.500 | 1.500 | 1.500 |
| 4 | Ascent | 2.000 | 1 in 480 | 2.460 | 1.660 | 2.060 |
| 5 | Ascent | 4.875 | 1 in 422 | 6.138 | 4.046 | 5.115 |
| 6 | Ascent | 3.625 | 1 in 440 | 4.531 | 3.009 | 3.770 |
| 7 | Ascent | 6.625 | 1 in 330 | 8.811 | 5.499 | 7.155 |
| 8 | Descent | 4.000 | 1 in 330 | 3.320 | 5.320 | 4.320 |
| 9 | Descent | 2.500 | 1 in 660 | 2.100 | 2.938 | 2.675 |
| 10 | Descent | 1.759 | 1 in 406 | 1.452 | 2.222 | 1.837 |
|  |  | 28.750 |  | 32.399 | 27.899 | 30.337 |
| $\begin{aligned} & \text { Hence } 30.337-\frac{\mathrm{m} . \mathrm{m}}{28.750}=1.587 \text {, or about } 1 \frac{1}{2} \text { mile, the loss upon } \\ & \text { the gradients. } \end{aligned}$ |  |  |  |  |  |  |

On comparing the results of these two lines, designated by $A$ and $B$, it appears that A loses only about one-seventh of a mile, while B loses about a mile and a half in steam-power or in time by means of the gradients alone, when the effects of the slopes are estimated by Mr Barlow's tables ; but this does not give a proper estimate of the relative expenses of the lines. This is obtained from a comparison of the mean horizontal distances in the right-hand columns. Thus $\dot{\mathbf{A}}$ has 33.882 miles of mean horizontal distance, while $\mathbf{B}$ has only 30.337 miles. The difference of these is 3.545 miles, the loss of $\mathbf{A}$ above $\mathbf{B}$, in passing once along the line, and of course double of this, or about 7 miles, in one trip forward and back, of steam-power or of time. These conclusions are independent of 5 miles of actual measured distance, for the construction of which additional miles funds must be provided, which causes an immense loss, or useless expenditure of money to the shareholders of A's line, while that of $B$ is more effective.

Besides entailing the expenses of construction on the shareholders for these additional useless 5 miles, the expenses of transit over them must be charged on goods and passengers, thus compelling those who use the railway to suffer a severe añnual loss, without any equivalent advantage. These injudicious schemes will no longer be tolerated, as the Legislature now (1841) employ, very properly, men of competent science to examine them bêfore an act for their execution can be obtained. So much for the benefit conferred on the public by injudicious speculators in railways: In fact, they materially injure the public as roell as themselves.

Hence, from this.investigation, great care should be taken to avoid extending the lines too much for the sake of good slopes, whereby more may be easily lost in distance than gained by good gradients. Hence, too, the policies, or fancy
grounds and parks, of noblemer and private gentlemen are indiscriminately assailed without any reason. The public are, indeed, greatly interested in the proper selection of the cheapest and most economical line of railway in every respect, and ought to make every exertion to obtain it. . For this purpose, it appears that a national system of railways ought to be adopted, and that parliament ought to exercise great care in examining the nature and qualities of all railways, before passing bills for their completion.

In conclusion, it ought to be an object with the engineer to render, as nearly as possible, the cuttings and embankments equal, so that little ground will be required for superfluous earths to be deposited in spoil banks, as they are technically called: For making the necessary calculations, Macniell's Tables will be found very useful. If these are considered too expensive, some of the smaller tables; as our Table XXXII., \&c., may be easily obtained, accompanied by directions for their use.*
3. To lay off points in a circle, such as in the curves of railways. In the figure we have, by the principles of geometry, $\mathrm{AB}=\frac{\mathrm{AT}^{2}}{\mathrm{BG}}$ nearly.

Here let the radius CB of the curve be one mile, hence $\mathrm{BG}=2 \times 8000$ links $=16,000$ links. Now, let a point for each degree round the centre be set off. Then the natural tangent for one degree is 0.017455 , whence $0.017455 \times 8000=$ 139.64 links $=\mathrm{AT}=\mathrm{T} y$ nearly, in this case. Hence $\frac{\mathrm{AT}^{2}}{\mathrm{BG}}=\frac{139.64^{2}}{16000}=1.225$
 links $=\mathrm{AB}$ or $y \mathrm{~B}$, because, when the circle is great com-

[^9]pared with TA or $\mathrm{T} y$, then AB and $\boldsymbol{y} \mathrm{B}$ must be nearly equal.

Again, produce the chord TB to subtend another degree, making $\mathrm{BE}=\mathrm{TA}$, or rather $\mathrm{T} y$, then $\mathrm{EF}=2 y \mathrm{~B}=$ $2 \times 1.225=2.45$ nearly. Again, through $B$ and $F$ produce the chord BF to H , so as to subtend another degree, and make $\mathrm{HK}=2.45$ links as before, and K will be another point in the circle; continue this process till the whole curve is completed by points, and then soften the points into a continuous curve by any practical method that may readily occur.

I believe an instrument for accomplishing this has been invented by Mr Brunel, which is easy in its application and sufficiently accurate in practice.

## DESCRIPTION AND USE

or

# THE INSTRUMENTS 

EMPLOYED IN

TRIGONOMETRICAL SURVEYING AND LEVELLING.

## DEFINITIONS

NECESSARY TO BE KNOWN IN ORDER TO UNDERSTAND THE USE OF INSTRUMENTS.

1. When angles are measured on a level plane, similar to the surface of the sea or a lake, they are called horizontal angles.
2. When angles are measured on a plane, perpendicular to the level plane, they are called vertical angles.
3. If angles are measured in neither of these planes, they are said to be taken in oblique or on inclined planes.
4. If the angles be measured in the vertical plane, above the straight line passing through the eye of the observer perpendicular to the plumb-line, they are called angles of elevation; their complements to $90^{\circ}$ are called zenith-distances; and the angular instruments, such as theodolites, altitude and azimuth circles, \&c. are commonly constructed so as to read either way according to the orders of the observer.
5. When angles are taken below the level or horizontal line defined above, they are called angles of depression; though, when the instrument reads zenith-distances, this dis-
tinction is unnecessary, because the excess above $90^{\circ}$ is the depression.
6. These respective positions are known by means of the plumb-line or spirit-level, one or other of which is generally applied to all instruments requiring, in their application, a knowledge of these planes.
7. Those points are said to be in the same level which are equidistant from the earth's centre considered as a sphere. The earth, however, is really a spheroid, having its polar axis less than its equatorial diameter by $\frac{1}{300}$, and in the more refined operations, it is the surface of this spheroid that is accounted the level.
8. In the measurement of altitudes, the height of the instrument must generally be added to the result from calculation when situated at the bottom, but subtracted when at the top. The mean level of the sea, or that at half-tide, is generally adopted as the standard from which heights are estimated. If high or low water at spring-tides be assumed, this should be stated, and the rise of the tide recorded.
9. To illustrate the precedirg definitions and terms used in the mensuration of heights and distances on the earth's surface trigonometrically, let AH'NR be a section of the earth at the surface of the sea, considered as a sphere, which for this purpose is sufficiently near the truth, then, if $S$ be the station of the observer at the height AS, or $h$, above the mean level of the sea, ZN will be pointed out by the plumb-line hanging freely, HS
 perpendicular to ZN will be indicated by the spirit-level ;
the point $T$ will be the utmost limits of vision, or the surface of the sea at the distance TS or $d$, and to these lines distinctive names have been appropriated. The point $Z$ is called the zenith, the opposite point N is called the nadir ; HS, perpendicular to ZN , is called the horizontal line; $\mathrm{H}^{\prime} \mathrm{CR}$, parallel to it, and passing through the earth's centre $\mathbf{C}$, is called the true horizon; and ST the distance of the visible horizon where the sky and the extreme limits of the surface of the sea appear to meet. When observations are made with angular instruments, as the theodolite, the altitude and azimuth circles, the reflecting circle, \&c. on any object $O$, in the direction SO ; the angle O SZ is called the zenith-distance, O SH the altitude, and HSTT the depression of the horizon TS, below the horizontal line HS marked by the spirit-level, called also by seamen the dip of the horizon. Independent of refraction, it is equal to the angle TCS measured by the arc AT. This are has by Horsburgh, \& $\mathbf{c}$. been improperly given as the definition of the dip, though, as has been shewn, it is equal to it, and may. be taken as a measure of it only, without allowing for the effects of terrestrial refraction.

## THE SPIRIT-LEVEL.

The spirit-level is a cylindrical glass-tube AOB , of a uniform diameter throughout, which is carefully ground into the form of a circular arc of large radius, occasionally of several hundred feet, which makes it appear nearly straight.

It is then nearly filled with some fluid, as alcohol or ether, and the ends are artificially closed or hermetically sealed. To the upper surface of fine instruments there is adapted a scale having divisions cut on a slip of ivory, or even on the surface of the glass itself, shewing single seconds or some multiple of the second, though in all the smaller portable
instruments, two seconds is the best, and by far the most convenient in application, and the reading from a central zero is commonly preferred.

If the cylindrical arc be placed in a vertical plane with

the convex side uppermost, and the extremities $A B$ resting on a horizontal surface as in the figure (1), the bubble of air $a b$ left in the tube will rise to the highest part of it, and will remain, from the principles of gravity, steadily between the same divisions, while the plane on which it is placed revolves round a truly vertical axis, by that means retaining the plane in a perfectly horizontal position. If it be necessary to bring the plane of an instrument, such as that of a theodolite, readily into a horizontal position, it is generally provided with two levels nearly equal to each other in every respect, which are placed at right angles to one another, and permanently attached to the plane, though still capable of adjustment by screws for that purpose. In the more ordinary instruments, the maker marks the posi-
tion of the bubbles when the plane is horizontal, and therefore when the bubbles occupy these positions, the plane on which they are fixed must be horizontal. For common instruments these marks are reckoned sufficient, and the divided scales are thought to be unnecessary.

In fine instruments, if the plane of the level be inclined, by the unequal action of heat upon its supports or other unavoidable causes, to the vertical, and the position of the extremities of the bubble be noted, then if, upon reversing the instrument by turning it half round the vertical axis, at a second observation, they occupy the same positions as in (1) (2), where A and B merely exchange places and occupy those of $\alpha$ and $\beta$ in a reversed position, the plane will be truly level, and have the same inclination to the vertical ZN in the preceding figure as it had before. This, however, from different causes, almost never happens, and then it becomes absolutely necessary to record the reading of both ends of the level reckoned most conveniently, as in the figure, from a central zero, indicated from the positions marked (3) and (4). If the verniers of the instrument read zenith-distances, the reading of the extremities of the bubble on. the scale of the level next the observer, called the eyeend, is marked + , and that farthest from him, or the objectend, -. If the instrument reads altitudes, the signs must be reversed, that is, the eye-end must be reckoned - , and the object-end +. If the divisions on the scale of the level do not shew single seconds, the difference between the positive and negative sums must be multiplied by the value of one division, and the result divided by twice the number of the observations, and applied to the degrees, \&c., read from the circle, according to its sign, to give the true reading corrected for the inclination of the vertical axis.

Examplr 1. Suppose the circle reads zenith-distances, then the reading of the level in the figure is marked thus :-

|  | e | 0 |
| :---: | :---: | :---: |
| No. 1 of the figure A, B gives | $\stackrel{+}{1}$ | 1 |
| ... 2 of the figure | 1 | 1 |
| ... 3 by a slight inclination B, A | 2 | 0 |
| ... 4 by an opposite inclination A , B | 0 | 2 |
| Sums | $\overline{4}$ | 4 |

These sums being equal, and having opposite signs, prove that no error arises from the inclination of the vertical axis of the circle in the use of a fixed level.

Ex. 2. In a course of operations made at Broddick in Arran by the writer, with a circle having three verniers each shewing $10^{\prime \prime}$, and a fixed level, each division of the scale of which indicated $3^{\prime \prime}$, the following observations on Polaris were taken in latitude by estimation $55^{\circ} 35^{\prime} 30^{\prime \prime}$ N., longitude $20^{\mathrm{m}} 44^{\mathrm{s}} \mathrm{W}$., on the 6th of August 1836, by a watch $9^{\mathrm{m}} 5^{\mathrm{s}}$ fast.

Broddick Bridge, August 6. 1836.


from which the latitude may be found by the method explained in the Nautical Almanac for 1836, p. 524, or by the formula given for the same purpose in this work. These observations, with the assistance of Mathematical and Astronomical Tables, and the Nautical Almanac, give the latitude $55^{\circ} 35^{\prime} 28^{\prime \prime} .6 \mathrm{~N}$. from this series, which, where great accuracy is required, ought to be continued for a considerable time on stars both to the north and south of the zenith, in pairs nearly equidistant from it, to destroy any error from a bias in the instrument, or a faulty habit of observing.

The mean of the whole, combined according to the number of observations in each series, will, even with a mode-rate-sized instrument, give the final latitude with considerable accuracy. The most convenient division of the scale of the level is $2^{\prime \prime}$ for each, because the effect of the level would be got by dividing the difference of the sums of the columns $e$ and $o$ by the number of observations simply, whereby both the multiplication by the value of one division of the scale and the operation of doubling the number of observations for a divisor is avoided.

THE VERNIER.
The vernier is a small scale sliding against a divided scale or arc, in such a manner as to subdivide those parts of the arc into smaller divisions than can be conveniently and distinctly executed on the arc itself.

Thus, if an arc be divided into single degrees, then a
small scale, having an extent equal to 59 of these degrees divided into 60 equal parts, each part on the vernier will be

$\frac{1}{60}$ less than one on the arc. But $\frac{1}{60}$ part of one degree is equal to $1^{\prime}$, consequently such a vernier would, by the coincidence of any two lines-one on the vernier with one on the arcshew single minutes. This vernier, however, would be rather inconveniently long. If, therefore, the arc, as in the common theodolite, be divided into half degrees of $30^{\prime}$ each, then a vernier scale of 29 of these half degrees, divided into 30 equal parts, will also shew minutes, and the vernier scale, being shorter, is more convenient. In this case, care must be taken not to forget half a degree in recording the reading indicated by the arrow which marks the degrees and parts on the arc. Generally, if $n-1$ divisions on the arc be divided into $n$ divisions on the vernier, then this vernier shews $\frac{1}{n}$ part of the divisions on the limb, for $1-\frac{n-1}{n}=\frac{1}{n}$. Thus, if one degree, as in the figure, be divided into six equal parts of $10^{\prime}$ each, and if 59 of these be divided into 60 on the vernier, then $\frac{10^{\prime}}{60}=\frac{1^{\prime}}{6}=10^{\prime \prime}$; consequently, such a vernier shews $10^{\prime \prime}$ directly, and $5^{\prime \prime}$ may be easily estimated. Finer subdivisions than these are generally obtained by the reading microscope. If observations be repeated, however, on different parts of the limb, a degree of precision sufficient
for almost the nicest purposes may be easily obtained even by this vernier. Indeed, repetitions should be taken on different days, to avoid the irregularities to which the most powerful instruments are liable from the effects of refraction. In using the different kinds of verniers, it will be found more easy, and less liable to error in reading off the arcs, when the degree on the limb and the minute on the vernier are similarly divided. Thus, if the limb be divided to $20^{\prime}$, the vernier should shew $20^{\prime \prime}$; if the limb read to $10^{\prime}$, the vernier should read to $10^{\prime \prime}$, as in the figure, \&c. By this arrangement, the mind is less liable to be distracted during the operation of reading, than when the limb is read according to one arrangement, and the vernier to another.

## THE READING MICROSCOPE.

When the reading microscope is applied to read the divisions of an astronomical circle, the graduations in the arc generally indicate spaces of five minutes each, which are read along with the degrees by means of an index pointer. The remaining minutes and seconds are determined by the reading microscope.


Method of Adjustment and Application to Practice.
In the figure, $A, A^{\prime}$ represents the microscope, attached
to the instrument by the arm $l$, and passing through its support B , formed by a collar embracing it, where it is firmly held by the milled nuts $g ; g^{\prime}$, acting on screws cut upon the tube of the microscope. These nuts also serve the purpose of placing the instrument at the proper distance from the divisions which it is employed to read, in order to obtain distinct vision, and destroy parallax. In the body of the instrument, at $a$, the common focus of the object and eyeglasses, are placed two wires, crossing each other diagonally at acute angles, which are made to traverse the field of view, backwards or forwards, by turning the micrometer head $b$, whose axis works in the box $c, c^{\prime}$, in the first figure. In the second figure is shewn the field of view, with the magnified divisions on the circle, as seen through the microscope. The shaded part represents the diaphragm, with its cross wires, the angle between which may, by turning the micrometer-screw $b$, be bisected by any line on the circle within the field of view, as is shewn in the figure. On the left hand of the diaphragm appears the scale of minutes, from its shape called a comb, in which each tooth represents a minute. Moveable with the wires along the comb, is a small index or pointer $i$, which, in the figure, is represented at zero, the centre of the scale, known to be correct when it bisects the small hole at the back of the comb, while at the same time the cross wires bisect a division. Now one revolution of the screw $b$ moves the point connected with the wires over one tooth of the comb, that is, over a space on the divided arc of the circle equal to one minute, and therefore part of a revolution moves them only over a part of a minute. To determine the value of this fractional part of a minute in seconds, a large cylindrical head, $e, e^{\prime}$, is attached to the screw, having its exterior circumference divided into 60 equal parts, representing se-
conds, and read by an index opposite the eye of the observer at $f$. In reading off an angle by this instrument, observe, first, the degrees and nearest five minutes shewn by the pointer on the graduated circle, then this will be the true angle, if, as in the figure, a division on the graduated circle bisect the angles of the cross wires. But if the cross wires be not thus bisected, read the degrees and nearest five minutes as before, then apply to the microscope, and; by turning the screw $b$ in the order of the numbers upon the head $e e^{\prime}$, make the nearest division in the reverse order of the numbers upon the graduated circle, nicely bisect the acute angles formed by the intersection of the cross wires; the number of teeth which the pointer $i$ has passed over from its zero, to produce such a bisection, will be the number of minutes to be added to the degrees and minutes read off the circle by the pointer; and, lastly, the odd seconds and estimated tenths to be added are taken from the divided head $\varepsilon e^{\prime}$, as shewn by the index $f$. In cases of great nicety, the run of the microscope may be taken to the next division in the direct order of the numbers upon the circle, which, subtracted from five minutes, ought to give the same number of minutes and seconds as formerly, to be added to the arc shewn by the pointer on the circle. If there is a slight discrepancy, the mean of both may be taken and so applied.

## Adjustments of the Microscope.

1. To make the cross wires in the focus of the microscope and the divisions on the circle appear both at the same time distinct and free from parallax, draw out the eye-piece $d$, until distinct vision of the wires is obtained, and the divisions on the instrument are equally well defined and free from parallax ; that is, whether any motion of the eye causes the least apparent displacement of the wires with-
respect to the graduations. If such a dancing motion be observed, the microscope must be moved to or from the circle, by turning the nuts $g g^{\prime}$, easing the one and tightening the other, till the wires and graduations appear both distinct, and no parallax can be detected.
2. To make five revolutions of the micrometer-screw measure a five-minute space upon the graduated circle exactly. If the run of the screw has been carefully adjusted by the maker, and no alteration made in the body of the microscope, the image of the space between two divisions will be exactly equivalent to five revolutions of the screw, when the wires and divisions are both seen distinctly. Suppose, for example, however, that the microscope has been deranged, and the run is too great, and that the $5^{\prime}$ space on the arc is equal to $5^{\prime} 5^{\prime \prime}$, when measured by the micrometer, thus making the image too large. But the magnitude of the image formed by the object-glass of the microscope depends entirely on the distance of the object-glass from the limb, and, in the ordinary construction of the microscope, is diminished by increasing the distance between the objectglass and the limb, and conversely. In the case supposed, the image is too large, consequently the object-glass must be removed farther from the limb, by turning the screw at $h$ inwards in the direction of B.* The image will not now be formed at $a$, as it ought to be, but nearer to $B$, and distinct vision must again be obtained by bringing the whole body of the microscope, by the screws $g g^{\prime}$, nearer to the limb. By a repetition of two or three more cautious attempts in this way, five revolutions of the screw carrying the cross wires will correspond exactly with the image of the space between two divisions, which, for greater security,

[^10]may be read to the right and left on each side of zero. The screw $c^{\prime}$ gives motion to the comb or scale of minutes ; and the micrometer-head, being adjustable by friction, can be made to read either zero or any required second, when the cross wires bisect any particular division, by holding fast the milled head $b$, and at the same time turning the divided arc $e e^{\prime}$ round till any required division, as zero, coincides with $f$, the index.

## THE TELESCOPE.

All instruments capable of now giving results possessing the requisite accuracy are furnished with one or more telescopes. The rays of light proceeding from distant objects move in straight lines, unless they are reflected or refracted by some medium, such as metal, glass, \&c., and also in parallel lines nearly, especially if the object from which they come be remote.

Let $A B$ represent the section of a lens, such as the ob-ject-glass of a telescope. Let the parallel rays coming from some distant object on the left beyond $C$ strike the glass lens
 $A B$, they will pass through it, suffering refraction, and, on leaving the lens at the opposite side, they will converge and meet in the straight line $C D$ at a certain point $D$, called the focus of the lens, where the eye, by a little practice in selecting the proper distance, will see an inverted image of the distant object in the air. Now, suppose two of these lenses are applied to the construction of a telescope, the image of a distant object will be
 formed at $W$, the focus of the object-glass $A B$, where, by
moving the eye-glass or lens DF till its focus comes to the same point $W$, by means of two slides GH, IK, the eye of the observer at E will view a magnified inverted image of the object formed by the object-glass $A B$, with the eye-glass DF as a microscope. Since both these lenses are capable of motion, they may always be moved in such a manner that their foci will meet exactly at $W$, making the central line CWE a straight line, technically called the optical axis, or line of collimation of the telescope, from which the readings in all mathematical and astronomical instruments are taken. This point, $W$, is marked by fine wires, hairs, silk fibres, or spider lines, and this is the reason why both glasses must be moved till the telescope produce distinct vision, and the wires are well seen, in which case the telescope is said to have no parallax.

If this adjustment is imperfect, the object will, on moving the eye up and down a little, start from the intersection of the wires, thus causing an uncertainty in all observations, which must be instantly corrected. The point $W$, or focus of the object-glass, varies with every change in the distance of the object, and therefore this adjustment must be frequently examined, and, if necessary, corrected for terrestrial objects, though it remains constant for celestial. This instrument is commonly called the astronomical or inverting telescope, because it wants other two lenses between the object and eye glasses to view objects erect as they appear to the naked eye. They are, however, almost universally employed for astronomical purposes, where it is less necessary to see objects erect, and because they appear more distinct, from a greater quantity of light being attainable, since each lens absorbs a portion of it. It is scarcely necessary to add, that no attempt at adjustment should be made during, but always before, an observation.

## THE THEODOLITE.

Of all angular instruments, the theodolite, properly constructed, is that best suited to the purposes of the surveyor. It has been formed on a great variety of plans, but that most approved for general purposes is the five-inch theodolite, divided by one or two verniers to minutes in both the horizontal and vertical arcs. It would be an improvement, for nice purposes, if the vertical arc were an entire circle, having the telescope passing through its centre, and capable of reversion like the common portable astronomical circle, though this is perhaps unnecessary for the ordinary practice of a common land-surveyor.

## - Description.

The instrument consists of an under circular plate divided commonly into degrees and half-degrees, usually called the horizontal limb at AA, on which an upper circular plate, called the vernier-plate, turns freely, that by means of one or two verniers, $\mathbf{E}$, subdivides the half-degrees on the lower into minutes. Both plates have an easy though steady motion round the axis, which, for that purpose, is slightly conical. The internal centre also fits into a ball working within a socket at D , and the parts are held together by an internal screw at the lower end of the axis, within the tripod formed by the legs.

The diameter of the lower plate is a little greater than that of the upper, and its exterior edge is cut off in a plane inclined to the axis, which is technically called chamfered; and in the best instruments is covered with silver, to receive the graduations, being less liable to become obscure by the action of the atmosphere than the metal of which the plates are made. On the opposite ends of an imaginary
diameter, at the distance of $180^{\circ}$ from each other, a small space, E , is also chamfered and covered with silver, form-

ing, with the edge of the lower plate, a continued inclined plane, on which the proper divisions being cut constitute the verniers. When the lower limb is graduated to thirty minutes, the vernier has a space equal to twenty-nine of them divided into thirty, and each, consequently, reads to minutes, which, by means of a microscope, either attachedor detached, may by estimation, when thought necessary, be carried to thirty or even twenty seconds. For fine purposes, the degree is divided into three equal parts, each
of twenty minutes, and, on the vernier-plate, a space equal to fifty-nine of these being divided into sixty, then this vernier indicates twenty seconds.

The two parallel plates under the graduated limb at $\mathbf{F}$ and $G$ are held together by a ball and socket at $D$, and are set firm by four milled-headed screws $\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{H}$, which turn in sockets fixed to the lower plate, while their heads press against the under side of the upper, thus, acting on the vertical axis by means of the ball and socket, render the horizontal and vernier plates truly level when the instrument is prepared for observation.

Beneath these parallel plates is a female screw, within which the male screw lays hold of the axis, and keeps it firmly to the stand. The lower parallel plate is connected by brass joints to three mahbgany legs, having their lower ends pointed with metal, for entering the ground, and frequently so constructed, that, when shut up, they form one round staff, secured in that form for carriage by rings placed upon them. When the legs are opened out they make a firm stand, however uneven the ground may be. Sometimes the legs are round or cylindrical, and formed of two parts, which unscrew for packing in a box, to facilitate their carriage when travelling. In this case, shods should be prepared to screw on the upper half, to be used when any nice observations are to be made requiring great steadiness in the stand.

The lower horizontal limb can be fixed in any given position by the clamping-screw I, which causes the collar $K$ to embrace the axis C , and prevent it moving. It is generally necessary that the telescope should be fixed in some precise position, more exactly than it can be by the hand alone. For this purpose, it is first made nearly correct by the hand, the parallel plates being previously clamped with
the verniers, and by the tangent-screw accurately set to the given positions, as zero and $180^{\circ}$; then the instrument is moved a small quantity, by turning the slow-motion screw $\mathbf{L}$, attached to the upper parallel plate, till the direction of the cross-wires of the telescope is perfected. In a similar manner, the upper or vernier plate being now released, the telescope may again be placed upon any other object whose angular distance from the first is required, which, by the clamping and tangent screws, may be rendered perfect as before, and the angle shewn by the verniers must now be read and recorded. Before proceeding to measure the horizontal and vertical angles, the parallel plates carrying the divisions and verniers must be made perfectly horizontal by two spirit-levels $\mathrm{N} N$, placed at right angles to each other, and rectified by their adjusting screws for this purpose. Upon the vernier-plate, too, is commonly placed a compass between the levels, for the purpose of taking magnetic bearings.

The vertical frames Q Q support the pivots of the horizontal axis of the vertical arc PVP, on which the telescope is placed. There is sometimes an arm carrying a microscope for reading the altitudes and depressions measured by this arc, and determined by the vernier V , which has a motion of several degrees, so as to be placed opposite the divisions of coincidence. There are, on this vernier, two sets of divisions reading in opposite directions, of which the upper reads elevations, and the lower depressions.

Another screw S clamps the end of the horizontal axis seen at $Q$, while a slow-motion or tangent-screw, $T$, moves the vertical arc and telescope, till a perfect observation be made. One side of the vertical arc is inlaid with silver, and is divided into single minutes, or lower, with the assistance of its vernier. On the other side there are sometimes
placed divisions, to shew the difference between the hypotenuse and base of a right-angled triangle, the hypotenuse being 100 , or, which comes to the same thing, the number of links to be deducted from each chain's length in measuring up or down an inclined plane, to reduce it to the horizontal measure. If the angle of elevation and depression be taken, these afford data to take this reduction more accurately, from a table calculated expressly for this purpose, or the deduction may be readily made by a table of natural versed sines. The level which is shewn at $\mathbf{N}^{\prime}$, under and parallel to the telescope, is attached to it at one end by a joint, and at the other by a capstan-headed screw, and will permit the level to be placed parallel to the optical axis of the telescope, commonly called the line of collimation. The screw at the opposite end is employed to adjust it laterally, so that it may be placed parallel to the axis also in a vertical plane. In this way the level is placed parallel to the axis of vision, both horizontally and vertically. The telescope has two collars or rings of gun-metal, ground truly cylindrical, on which it rests on its supports XX, called Ys, from their resemblance to that letter, and it is confined in its place by the clips Z Z, which may be opened by removing the pins $\mathbf{Y} \mathbf{Y}$, for the purpose of reversing the telescope in double observations, when great accuracy is required. These pins should, to prevent loss, be secured by silk strings connecting them with the frame.

In the focus of the eye-glass are frequently placed three fine wires or lines of spider-web, one horizontal and two crossing it nearly vertically, making with each other a small or acute angle. This method of fixing the wires is preferable to having one horizoutal and another vertical, crossing one another at right angles, as is commonly the case, especially for horizontal angles, because a distant object can be
made to bisect the small angle between the vertical wires with more certainty than the object can be bisected by the vertical wire. For many astronomical purposes, however, the second method is preferable; and for making observations on the sun, one or two coloured glasses should be provided, to be fitted on the eye-end of the telescope. The screws for adjusting the cross-wires are shewn near the eyeend of the telescope at $a, a, a, a$, of which there are four, equidistant from each other. Hence the imaginary line joining any two opposite screws is at right angles to the line joining the other two, so that, by first easing the one, and then tightening the other opposite to it, the intersection of the cross-wires may be readily adjusted. The objectglass, $o$, is moved by turning the milled-head $b$, on the side of the telescope, till the object is seen well defined, while a corresponding motion is given to the eye-glass, $e$, by moving it with the hand in its slide till the wires are seen equally distinct, which will easily be effected in one or two trials. The reason and effects of this process will be readily comprehended by consulting the description of the last figure, p. 99 , though the arrangement there is somewhat different.

A brass plummet and line are also packed in the box with the theodolite, to be suspended from a hook truly under the centre of motion of the horizontal arc, by which it can be placed exactly over the station whence the observations are taken, an operation to be carefully performed in all fine work, otherwise considerable errors may arise, and surveys cannot close accurately. If required, two extra eyepieces are furnished for the telescope, to be used in astronomical observations. The one inverts the object, has a greater magnifying power, but, with fewer lenses, possesses more light. The other is a diagonal eye-piece, which, without inconvenience, will enable an observer to see objects
having a considerable altitude. A small cap, containing a dark-coloured glass, is made to apply to the eye-end of the telescope, or to either of the preceding lenses, to screen the eye of the observer from the effects of the sun's rays, when that object is observed. A magnifying-glass, a screw-driver, and a steel-pin to turn the capstan-screws for adjustments, are also furnished with the instrument. In some theodolites, the telescope passes through the horizontal axis, the supports are made sufficiently high to allow the telescope to pass under them when the instrument is reversed in azimuth, and it then becomes an astronomical altitude and azimuth circle. With these additions, a well-made theodolite may perform most of the problems in practical astronomy with considerable accuracy, though such an instrument would be rather too good for the usual purposes of surveying, which may be very well effected by an inferior instrument.

## Adjustments.

1. The first adjustment is to make the intersection of the cross-wires coincide with the axis of the cylindrical rings on which the telescope turns, called rectifying the line of collimation. This is known to be correct when the eye, looking through the telescope, observes the intersection of the wires continue on the same point of a well-defined distant object during an entire revolution of the tube of the telescope in the Ys. First make the intersection of the wires, when the level is under the telescope, coincide with some well-defined distant object ; then turn the telescope half round in its Ys till the level lies above it; and if the same point is still cut by the intersection of the wires, the adjustment is correct in that position. If not, move the wire onehalf the deviation, by turning two of the opposite screws at
$a \operatorname{a}$, taking care to release one before tightening the other, and correct the other half by elevating or depressing the telescope. Proceed in like manner with the other position, by placing the level alternately on the right and left.

Now if the coincidence of the cross wires with the mark remains exact during a complete revolution of the telescope in the Ys , the line of collimation is correct ; if not, the same operations must be repeated till it is so.
2. The second adjustment is that which places the level attached to the telescope parallel to the rectified line of collimation. The clips Z Z , being open, and the vertical arc PVP clamped, bring the air-bubble, $\mathbf{N}^{\prime}$, of the level to the centre of its glass-tube by turning the tangent-screw T ; when this is done, reverse the telescope in the Ys, that is, turn it end for end very carefully, so as not to disturb the vertical arc ; then, if the bubble resume its former position in the middle of the tube, all is right; but if it rises to one end, bring it back one-half by the screw towards the eyeend of the telescope in the figure, which elevates or depresses that end of the level, and the other half by the tan-gent-screw T; and this process must be repeated till the adjustment is perfect. To make it completely so the level should be adjusted laterally, that the bubble may remain in the middle of the tube when slightly inclined to either side of its usual position directly under the telescope. This is effected by giving the level such an inclination, and if the bubble does not continue still in the middle, it is necessary to make it do so by turning the two lateral screws in the end of the level next the eye. If, in making the lateral adjustment, the former should be deranged, the whole operation must be carefully repeated.
3. The third adjustment is that which makes the axis of the horizontal limb, or the azimuthal axis, truly vertical.

Set the instrument, by the eye, as nearly level as possible; fasten the centre of the lower horizontal limb by tightening the staff-head by the clamp $I$, while the upper limb is at liberty to be moved till the telescope is over two of the parallel plate-screws; when in this position, bring the bubble of the level under the telescope to the middle of its tube by the screw T; now turn the upper limb, or vernier-plate, half round, that is, through $180^{\circ}$ from its former position, then, if the bubble returns to the middle of its tube, the limb is horizontal in that direction ; but if not, half the difference must be corrected by the parallel plate-screws over which the telescope lies, and the other half by elevating or depressing the telescope from turning the tangent-screw $T$, of the vertical arc. When this is effected, turn the upper limb $90^{\circ}$ from its present position, either forward or back, that the telescope may lie over the other two parallel platescrews, and from their motion set it horizontal by means of its level. Having now levelled the limb-plates by means of the telescope's level, which is commonly the most sensible upon the instrument, the air-bubbles of the levels fixed upon the vernier-plate may be brought to the middle of their tubes by the screws which fasten them to their places.
4. The fourth adjustment is that which brings the zero of the vernier of the vertical arc to zero on the limb. When all the preceding adjustments are perfect, if zero on the vernier does not coincide with zero on the arc, the deviation must be rectified by releasing the screws by which the vernier is held, and then tightening them after having made the proper adjustment. As this is an operation difficult to be performed accurately, it will be perhaps better to call the quantity of deviation an index error, to be applied according to its sign, which must be carefully noted. This index-error is best determined by repeating the observation
of an altitude, or depression in reversed positions of the telescope and vernier-plate, then half the difference will be the error ; or half the sum of the observed altitudes or depressions before and after reversing the telescope, will be the true angle independent of index-error.

## The Method of observing with the Theodolite.

The instrument being placed, by means of its plumb-line, exactly over the station whence the angles are to be taken, and set level by the parallel plate-screws, then, by the clamping and tangent screws, set the vernier A exactly to zero, and B to $180^{\circ}$, or as near it as the construction of the instrument will permit, read off the verniers, and note them in a book for that purpose. Turn the telescope by hand till it is nearly on the left hand object by a motion of the head of the instrument fixed in one piece, round the lower axis C , tighten the clamping-screw I, and with the tangent-screw L, make the intersection of the wires nicely bisect the object. Now release the upper plate, and move it round by hand till the telescope is directed to the second object, whose angular distance from the first is required; then clamping it with the screw M, make, with its tangent-screw, adjacent to it, the cross wires bisect this object correctly, and read off the two verniers as before, the difference between the first and second means will be the true horizontal angle required; thus,

First reading.


By means of the motion of the lower horizontal plate about the vertical axis, any angle required with great accuracy may have its value repeated as often as we please, and the amount of the whole, divided by the number of repetitions, will give the simple value, almost independent of errors of construction and dividing. To repeat an angle, therefore, after making the second bisection as directed above, let the upper plate remain clamped to the lower, while the clamp of the axis is released. Now move the whole head of the instrument by hand round upon the lower axis toward the first object, placing the cross wires in contact with it, and make, as at first, the bisection perfect with the lower tangent-screw. Leaving the instrument in this position, release the upper or vernier plate, turn the telescope towards the second object as formerly, and bisect it nicely with the aid of the upper clamping and tangent screws. This operation completes one repetition, and when the observation is read off and compared with the preparatory reading of the verniers, the difference will be twice the real angle.


The correct angle from one repetition, and this process may be carried as far as five or ten times, if thought necessary, taking always care to read the first observation, and record it, so that when the last division is performed, as many circumferences of $360^{\circ}$ may be first added as will render the quotient nearly the same, within a few seconds, as the first observation already recorded. When the art of constructing
and dividing instruments was less perfect than at present, considerable advantage resulted from this repetition, though now little, in ordinary cases, will be obtained.

The magnetic bearing of an object is taken by reading the angle pointed out by the compass-needle when the object is bisected by the telescope, recollecting that the north end of that needle is indicated by a notch or small brass pin passing through it horizontally, and in the usual construction of the instrument, the south end is generally that read, though, for greater accuracy, the mean of both may be taken.

The bearing may be obtained a little more accurately by clamping the lower plate, then by moving the upper plate till the needle reads zero, at the same time reading the horizontal limb; now, by turning the upper plate about, bisect the object and read again, the difference of these two readings will be the bearing required.

In determining the variation by the theodolite-compass, it would contribute to accuracy by destroying the errors of centering of the needle, to observe two objects whose azimuths had been accurately found astronomically both forward and backward.

In taking angles of elevation or depression, it may be added that the object must be bisected by the horizontal wire, or more accurately by the intersection of the wires. In cases requiring great accuracy, after an observation is made with the telescope in its usual position, it may be reversed in the Ys , that is, turned end for end, and the same observations repeated, and a mean of the whole taken for the true value.

The proof of the accuracy of a number of horizontal angles taken completely round one point or station, is that their sum should be exactly $360^{\circ}$.

If all the angles of a plane triangle be measured, their sum ought to be $180^{\circ}$; of those of a four-sided figure $360^{\circ}$; and, in general, when all the angles of any polygon of $n$ sides are measured the sum $s=180^{\circ}(n-2)$, provided all the angles be salient, that is, projecting outwards from the body of the figure, or if the interior angle, when even greater than two right angles, be thus measured.

## THE SPIRIT-LEVEL.

The spirit-level, as usually constructed, is an instrument in some respects similar to the theodolite, and by the latter the operations of the former may be readily performed. The spirit-level has a stand with clamping and tangentscrew, a telescope with its level, and a compass exactly similar to the theodolite, but without horizontal or vertical arcs, the compass alone being thought sufficient for every angular purpose required in the use of this instrument.

The method of setting up and adjusting for observation the $Y$ level at least, being so similar to that followed for the theodolite, that it is not necessary to say much in regard to it here. There are, however, several other kinds of levels, such as Troughton's, Gravatt's, with more powerful telescopes than those generally applied to theodolites, in which some of the adjustments are effected by the maker, and do not so easily get out of order as those of the common Y level. These adjustments are generally made in the field by interchanging the position of the instrument and divided levelling-rod, half the difference of the reading is the correction of the level, which must be corrected by altering the adjusting screws of the telescope, till the intersection of the cross wires cuts the middle point between the two readings in both positions.

There are various levelling-rods constructed, to be used
along with this instrument, having marks or vanes that slide up and down, and are moved by the bearer or assistant. It is, however, more convenient, and less liable to error, to have a rod divided into feet, tenths, and hundredths, and so distinctly marked that the principal observer may easily read them through his telescope at a moderate distance, and instantly record them. In all observations the reading and writing should be re-examined to see that both are correct.

## THE ALTITUDE AND AZIMUTH CIRCLE.

The Altitude and Azimuth Circle, as now constructed, is an instrument of great utility and importance in Practical Astronomy and Geodesy. It is made of all dimensions, varying from the small portable instrument, whose divided circles are five or six inches in diameter, to those of two or three feet. The smaller class have their arcs read by verniers, the larger by reading microscopes. The diameters of the divided circles of that whose figure is here given, are generally about twelve or eighteen inches, and the divisions are subdivided by reading-microscopes; while the smaller class of the same construction, varying from ten to twelve inches, have only verniers reading to about $10^{\prime \prime}$; but both these are occasionally varied to suit the views of purchasers, and the work they are required to perform.

## Description.

To the centre of the tripod AA, is fixed the vertical axis of the instrument of a length equal to about the radius of the circle passing up the interior of frustum of the cone B. ${ }^{*}$ On the lower part of the axis, in close contact with the tripod, is centered the azimuthal circle C , which,

[^11]by means of a slow-motion screw, whose milled head appears at $D$, admits of a horizontal circular motion of some extent for the purpose of bringing its zero exactly into the

meridian ; though in some instruments, for the sake of permanent stability, this is omitted, as it is occasionally purchasing a convenience at the risk of some error.

Above the azimuth circle, and concentric with it, is placed a strong circular plate E, which carries the whole of the upper works, and also a pointer to shew the degree and nearest five minutes on the azimuth circle, while the remaining minutes and seconds are obtained by the read-ing-microscopes F G, as.previously explained in the description of the reading-microscope. This plate, by means
of the conical part $B$, supported by a brace and carefully fitted, rests on the axis of the tripod, and moves concentric with it. The conical pillars HH , support the horizontal or transit axis I , which being longer than the distance between the centres of the pillars, requires the projecting pieces $c \boldsymbol{c}$, fixed to their tops to carry out the Y's $a \operatorname{a}$, to the proper distance for the reception of the pivots of the axis. The $\mathbf{Y}_{\mathbf{s}}$ are capable of being raised or lowered for levelling, \&c. the axis by means of the milled-headed screws $b b$. The weight of the axis, with the load that it carries, is prevented from pressing so heavily on its bearings as to injure the pivots by two friction-rollers on which it rests, whereof one of them is shewn at $e$.

This is accomplished by a spiral-spring fixed in the body of each pillar, which presses the rollers upwards with a force nearly equal to the superincumbent weight. These rollers, on receiving the axis, yield to the pressure, and allow the pivots to find their proper bearings in the Ys, while, at the same time, they relieve them from a great part of the weight which might cause them to wear rapidly and irregularly, thereby injuring the accuracy of the instrument.

The telescope K K passes through the axis I, on which, as a centre, there are fixed the two circles JJ , each close against the telescope on both sides. The circles are fastened together by small brass pillars, and, in the larger classes of instruments, occasionally supported by diagonal braces. By this double circle the vertical angles are measured on graduations cut upon a ring of silver, generally on one of the sides only, which from that circumstance is called the face of the instrument, a distinction to be attended to in making observations, by placing it alternately to the right and left, when a series is being completed. The clamp for fixing,
and the tangent-screw for giving slow motion to the vertical circle, are placed beneath it, between the pillars $\mathrm{H} H$, and attached to them as seen at $L$. A similar contrivance for regulating the azimuth circle, likewise divided on silver, is represented at $M$. The reading-microscopes for the vertical circles are carried by two arms $\mathrm{N} N$, bent upwards near their extremities, and attached towards the top of one of the pillars, one of which is shewn above $e$, and the other under $o$.

A circular plate of brass, with a round hole cut in it called a diaphragm, is fixed in the principal focus of the telescope near the eye-end, across which are stretched five vertical and five horizontal wires, at right angles with each other. The intersection of the two central ones, denoting the optical axis of the telescope, is the point by which an object ought to be bisected when only observed at one point, such as a terrestrial object when taking angles for geodesical purposes. The vertical wires are used for the same purpose as those in the transit instrument for observing the passage of a celestial body over the meridian, and the horizontal ones for taking zenith-distances or altitudes of celestial objects, by which a mean of five observations, or rather contacts, may be readily obtained. A micrometer, having a moveable wire, is sometimes attached to the eye-end of the telescope of the larger instruments, though it is not generally applied to the smaller class. This is frequently useful, but it cannot in general be so confidently relied on as an observation taken in the usual manner. The illumination of the wires necessary at night, is effected by a lamp, supported near the top of one of the pillars as at $d$, and placed opposite the end of one of the pivots of the horizontal axis, which being perforated, admits the rays of light to the centre of the tube of the telescope, where, falling on a perforated diagonal reflector, they are thrown towards the eye, and il-

## 118

luminate the field of view so as to enable an observer to bisect a star at or close upon the intersection of the central wires.

The vertical circle is usually divided into four quadrants, especially if there be two microscopes or verniers only, each numbered from the horizontal points, when the telescope is in a vertical position, $0^{\circ}, 10^{\circ}, 20^{\circ}, \& c$. as far as $90^{\circ}$. In this case each microscope shews zenith-distances. If verniers are used, there must be two setts of numbers on them reading in opposite directions, as shewn on the figure, page 94. In reading observations, the arrow always indicates the degrees and every ten minutes; but if, when the face of the circle is on the right, the minutes and seconds obtained by the vernier be read from the arrow in the order of the upper numbers upon the vernier plate, then when the circle is reversed, thereby placing the face on the left, they must be read towards it in the order of the lower numbers, and vice versa; while care must be taken by the observer always to read the arc and verniers in the order of the figures in the same direction.

In some circles a different plan is followed. The whole vertical circle is divided into four quadrants as before, each numbered $0^{\circ}, 10^{\circ}, 20^{\circ}, \& c$. as far as $90^{\circ}$; but instead of the previous method, following one another in the same order of succession. Consequently, in one position of the instrument, altitudes are read off, but with the face of the instrument reversed, zenith-distances; and with such instruments an observation is not considered complete till the object has been observed in both positions. In the latter case, the sum of the two readings will always make $90^{\circ}$, provided there be no error in the adjustments, the circle, or the observation. In cases where there are three or more microscopes, the readings will be different, according to the con-
struction. When, however, there are but two microscopes 00 , the straight line joining them should pass through the horizontal diameter of the circle, to render which perfect, a vertical motion, by means of the screws $b b$, is given to the $\mathbf{Y}$ s, to raise or depress them till this adjustment is accomplished.

A good spirit-level P , suspended from the arms which carry the microscopes, shews, upon turning round the circle, when the vertical axis is set perpendicular to the horizon. A scale usually shewing either single seconds, or (what is more convenient for small instruments) two seconds, is placed along the glass-tube of the level, which exhibits either the permanency, or the inclination of the vertical axis. This should be examined repeatedly, whilst making a series of observations, to ascertain whether any change has taken place in the position of the instrument after its adjustments have been completed, and, by recording its indications, to allow for any deviation if necessary. One of the points of suspension of the level is moveable by means of a screw $f$, for the purpose of adjusting the bubble. A riding-level, similar to that employed to level the transit-instrument, rests upon the pivots of the axis. It ought to be carefully passed between the radial bars of the vertical circle when set up in its place, and must be removed as soon as the operation for levelling the horizontal axis is performed.

The whole instrument is supported upon three foot-screws placed at the extremities of the three branches which form the tripod, and brass cups are placed under the ends of footscrews when put upon its stand. A stone pedestal, set perfectly steady, is the best support for this as well as the tran-sit-instrument ; but for travellers, a strong well-made tripod of wood, firmly braced, will be the most convenient. The author has frequently used a very convenient small six-
inch circle, differing a little from this, having three verniers, each shewing $10^{\prime \prime}$, and a fixed level, each of whose divisions indicate $2^{\prime \prime}$.

## The Adjustments.

1. To make the vertical axis perpendicular to the horizontal plane.

Set up the instrument in the position where the observations are to be made, then turn the instrument round till the spirit-level P is lengthwise in the direction of two of the feet-screws, when, by their motion, the air-bubble in the level must be made to occupy the middle of the glasstube shewn by the divisions of the scale attached to the level. When this is done, turn the instrument half round in azimuth; and if the axis is truly vertical, the bubble will again settle in the middle of the tube, but if not, the amount of the deviation will show double the quantity which the axis deviates from the vertical in the direction of the level. This error must be corrected-one-half by two of the feetscrews over which the level is placed, and the other half by raising or lowering one end of the spirit-level itself by the screw represented at $f$. This process of reversion and levelling should be repeated to ascertain whether the adjustment has been accurately performed or not, since adjustments of every kind can be made perfect by successive approximations only. When this part of the adjustment is satisfactory, turn the instrument round in azimuth a quarter of a circle, so that the level $P$ may be at right angles to its former position; and it will then be over the third foot-screw, which must be turned till the air-bubble is again central, and this adjustment will be completed. If the whole has been correctly performed, the air-bubble will remain steadily in the middle of the level, indicated by the divisions
of its scale, during an entire revolution of the instrument in azimuth. If not, the operations must be repeated till it does so.
2. To set the vertical circle at such a height that its two reading-microscopes shall be directed to two opposite points or zeros in its horizontal diameter.
This is readily accomplished by raising or depressing the Ys by means of the screws $\boldsymbol{b} \boldsymbol{b}$, which carry the horizontal axis.
3. To level the horizontal axis.

This operation is performed by means of a riding-level. Apply this level to the pivots, bring the air-bubble to the middle of the glass-tube by observing if the extremities of the bubble stands opposite the same division on each end of the scale by means of the screws $b b$, as before. Then reverse the level by turning it end for end ; and if the airbubble still, as formerly, remain central, the axis will be horizontal ; but if not, half the deviation must be corrected by the screws $b b$, and the screw at one end of the level which raises or depresses the glass-tube of the level with respect to its supports that rest upon the pivots. After performing this adjustment, the preceding must be examined to see if it be deranged by the last process. Indeed, it is preferable to set the axis horizontal first, and then by equally raising or depressing the two ends, to bring the microscopes into a diameter, and finally to level the axis again.

## 4. To adjust the line of collimation.

This adjustment requires the middle vertical wire to describe a great circle, and the middle horizontal wire to have a certain definite position with respect to the divisions on the limb. It is usual to rectify the middle vertical wire first, the others being set parallel by the maker. Direct the telescope to some small well-defined distant object; bi-
sect it with the intersection of the two central wires, and clamp the circle in that position. Now, turn the whole instrument half round in azimuth exactly, and, by the tan-gent-screw, elevate or depress the telescope, till it cut the same object, and if it be bisected at the same point as before, the collimation adjustment is correct; if not, turn the small screws which hold the diaphragm near the eye-end of the telescope through one-half of the error, and the adjustment will be completed. But as half the deviation may not be correctly estimated in moving the wires, it is necessary to verify the adjustment by moving the telescope the other half. This operation must be repeated till, by continued approximations, the adjustment is found to be perfect. To adjust the middle horizontal wire, point the telescope to a very distant object, near the intersection of the wires, bisect it by the middle horizontal wire, and read off by the microscopes the apparent zenith-distance. Now, reverse the instrument in azimuth, and, turning the telescope again upon the same object, bisect it as before, then read the arc which they shew. One of these, in this construction of the instrument, will be an altitude, and the other a zenith-distance; and, if there be no error, the sum of the two readings will be $90^{\circ}$ exactly. If they do not make $90^{\circ}$, half the difference from $90^{\circ}$ will be the error of collimation. If the instrument shews zenith-distances only, then half the difference of the arcs in opposite positions will be the index or collimation error, and its sign must be marked, whether + or - , when the face of the circle is to the right or left. This error may be either employed to correct an observation made with the instrument during its continuance in one position, or removed in the following manner. Read the zenithdistances in opposite positions of the circle, that is, with the face alternately to the right and left, of which take the
mean, that will be the true zenith distance. Then, while the telescope bisects the object, the microscopes, by their proper screws, must be adjusted so as to read that mean. In making a series of observations, however, they are generally taken in pairs, with the face of the circle alternately to the right and left, consequently the mean of the readings gives the true zenith-distance, independent of the error of collimation,-a method commonly followed in practice.
5. To set the central or middle wire truly vertical.

This may be effected by directing the telescope to a welldefined distant object. If, on elevating and depressing the telescope, it is bisected by every part of the wire, that wire must be truly vertical. If not, it should be adjusted by turning the inner tube, carrying the diaphragm or wireplate, till the preceding test of its verticality be satisfied; and, to avoid the effects of any small error on this account, care must be taken to make important observations near the centre only. The other vertical wires are, by the maker, placed equidistant from the middle one, and parallel to it, so that, when it is adjusted, the others are likewise correctHe also places the transverse wires at right angles to the middle vertical wire. These adjustments are always performed by the maker, and are little liable to derangement.

In general, it may be remarked, that during a series of observations, should the instrument be found to be a small quantity out of level (the other adjustments being perfect), it may be restored generally by means of the foot-screws only, when they require but a slight touch to effect it. This is more especially essential when the level of the horizontal axis is the one deranged, since correcting it by moving the Ys would derange the adjustment of the vertical circle with regard to its reading microscopes,-an occurrence which must be carefully avoided. The error of the vertical axis
is to be detected by the hanging level, and, by reading its scale, can be very readily allowed for in computing observations, as has already been shewn in the description of the level.

General Rule. When great accuracy is required, it is both easier and safer to correct by calculation, than to adjust by mechanical contrivance.

## Use of the Altitude and Azimuth Circle.

This is the most generally useful of all instruments, because it measures with great accuracy both horizontal and vertical angles. It does not, however, possess the power of repetition, like the circle of Borda, but the effect of any error of division on the horizontal circle may be diminished or destroyed by measuring the same angle upon different parts of the arc. For this purpose, let $r$ be the number of repetitions required, $v$ the number of verniers, and $c$ the change of zero in degrees, $c=\frac{360^{\circ}}{v r}$. Let, for example, $v=3$, and $r=4$, then $\frac{360^{\circ}}{12}=30^{\circ}$, the change. Whence the successive zeros, or rather starting points, of the vernier $A$ are $0^{\circ}$, $30^{\circ}, 60^{\circ}$, and $90^{\circ}$. By this means the whole circumference of the circle is equally employed, by which means the small errors of excess and defect mutually destroy each other. Even a small quantity of change, by means of the screw $\mathbf{D}$, if a great one be inconvenient, will greatly diminish the chance of errors in division, reading, and pointing. A re-peating-stand is frequently added to this instrument, which is a convenient appendage when great accuracy is required in the measurement of horizontal angles; and the operation is exactly similar to that explained when treating of the use of the theodolite. The vertical angles should, in all prac-
ticable cases, be taken at least twice, reversing the circle before taking the second observation, which will eliminate not only the errors of centering and division, but also those of collimation. In applying the instrument to astronomical purposes, this method is always employed. When the instrument is used to determine the latitude by what is termed circummeridian observations, that is, several observations taken a short time before, and a like number after, the meridional passage or transit, at times nearly equidistant, observe first with the face of the instrument to the right, and then to the left, by reversion in azimuth, noting the precise time of each observation. Now if, from computation, we have the exact time of the object's transit, by a chronometer shewing either truetime, or with a known error and rate, the object's distance from the meridian in time, at the instant of each observation, may be found. This, with the approximate latitude of the place, and the declination of the object, afford, by the formula (6), in page 18, and the aid of Table XVII., data for computing a quantity called the reduction to the meridian, which, subtracted from the mean of the observed zenithdistances, will give the apparent meridional zenith-distance of the object. This reduction must be applied with a contrary sign to the altitude. The nearer the observations are taken to the meridian, the less will the accuracy of the results depend upon a true knowledge of the time. To obviate such an error as much as possible, an equal number of observations should be taken nearly equidistant from the meridian, and not extending to more than ten or twelve minutes on each side of it, when the zenith-distance is not less than twenty or thirty degrees, even when taking in quantities of the second order. Should the zenith-distance be less than this, in miean latitudes, the time must be limited to five
or six minutes; and, when very near the zenith, this method of repetition is not to be recommended.

This instrument may also be very successfully employed to determine the time and the direction of the meridian, either by absolute altitudes and azimuths, or equal altitudes and azimuths, when corrected by the necessary equations, by Table XVIII., for those purposes. The direction of the meridian may be very accurately determined with this instrument, by means of any circumpolar star, especially by the pole-star, when referred to a mark in or near the horizon, as shewn in pages $31,32, \& c$.

To insure permanence of position during a course of observations, this instrument is frequently furnished with an under telescope, capable of some degrees of motion, both in a horizontal and vertical direction, till the cross-wires in its focus accurately bisect some well-defined distant object, on which it is firmly clamped at the commencement of a series of observations; and the accuracy of the bisection being examined after their termination, and found perfect, proves the steadiness of the instrument, and no relative motion has taken place during the course of the operations.

Robinson of London, and Adie of Edinburgh, construct a class of theodolites similar in principle to this instrument, but of smaller dimensions, the divided circles being from five to ten inches in diameter, with three verniers, reading to $20^{\prime \prime}, 15^{\prime \prime}$, or $10^{\prime \prime}$, according to the size. The arms of the tripod are bent at right angles downwards, so as to raise the horizontal circle sufficiently to admit the conical axis $B$ to descend below instead of above it,-a position perhaps somewhat more convenient. These instruments are, therefore, well fitted to perform all the operations of a theodolite and an astronomical circle with great precision,
considering their moderate dimensions and reasonable price. The common method of placing the centre of the vertical axis accurately over a station, is by means of a plumb-line suspended from the under side of the horizontal circle, though, in some of the larger class of instruments, the axis $B$ is hollow in the middle, with two cross-wires adapted to it, cutting each other at right angles in its centre, which, by means of a diagonal eye-piece in its top, is, by a slight motion of the instrument, brought to bisect the centre of the station.

## TRANSIT INSTRUMENT.

## Description.

A transit-instrument is a telescope, properly placed in the meridian, for the purpose of observing the times at which the celestial bodies pass this circle. The telescope is fitted to an axis, of which the ends, formed into pivots, turn in notches, from their shape called Ys. This axis is made hollow, opposite one of the ends of which is placed a lamp for illuminating the wires in night observations. These wires, generally five in number, are placed in the telescope equidistant from each other, and perpendicular to the horizon, having also a horizontal wire bisecting them at right angles, near or upon which the transits are observed. When properly adjusted, the middle vertical wire coincides with the meridian, and the instant that the centre of any celestial body passes this wire is called its transit. The other parallel wires are intended to correct or verify the observation, by taking a mean between the transits over the first and last, the second and fourth, and comparing it with the third or meridian wire; or, what is more correct, to take a mean of the whole, called the reduction of the wires.

The figure represents this instrument when the telescope
varies from eighteen inches to two feet in focal length. The telescope A A consists of two parts, connected together by a sphere $B$, which also receives the larger ends of the cones C C, placed at right angles to the tube of the telescope, and forming the horizontal axis. This axis terminates in two cylindrical pivots, which rest in Ys fixed at the upper end of the vertical standards D D. One of the Ys possesses a small motion in azimuth, communicated by turning the screw a. But that the telescope may move in a vertical circle, the pivots must be precisely in the same level, otherwise the te-
 lescope, instead of perpendicularly, will revolve in a plane oblique to the horizon. The levelling of the axis is, therefore, one of the most important adjustments of the instrument, and is effected by means of a spirit-level E , which, for this purpose, is made to ride across the telescope, and rest on the two pivots, and must be removed as soon as the adjustment is made. The standards D D are fixed by screws upon a cast-metal or brass circle $F$, which rests upon three screws $b, c, d$, forming the feet of the instrument, and by the motion of which the operation of levelling is performed.

The oblique braces G G are added for the purpose of securing the supports, so that the telescope may have both a free and steady motion. On the extremity of one of the pivots, which extends beyond its $Y$, is fixed a circle $\mathbf{H}$, which turns with the axis, while the double verniers ee
remain stationary in a horizontal position, whereof one shews the altitude and the other the zenith-distance at which the telescope is placed. The verniers are both set horizontal by the spirit-level $f$, which is attached to them, and they are fixed in their proper position by a brass arm $g$, clamped to the supports by a screw at $h$. The whole apparatus is moveable along with the telescope, and when the axis is reversed, it can be attached in the same manner to the opposite standard.

Near the eye-end of the telescope is placed a diaphragm in its principal focus, which, in this instrument, has five vertical wires and one or two horizontal wires close to each other, between which the observations are made. The central vertical wire ought to be fixed in the optical axis of the telescope, and perpendicular to the horizontal axis. These wires are visible in the day-time by the light passing down the telescope to the eye ; but at night, except a luminous object like the moon be observed, they cannot be seen. In this case they must be illuminated through a hole in one of the pivots of the axis, which admits the light of a lamp placed opposite to it, on the top of one of the standards as shewn at $I$. This light is directed to the wires by a reflector placed diagonally in the sphere B ; which reflector, having a large hole in its centre, admits the rays passing from the object down the telescope to the eye of the observer, who thus sees distinctly both the wires and the object at the same time. The lamp is so constructed that the light may be regulated according to the faintness of the objects, so as not to obscure its feeble rays. The telescope is also furnished with a diagonal eye-piece, by which stars near the zenith may be conveniently observed. The altitude and azimuth circle will, when well constructed and in perfect adjustment, perform the operations of a transit-instrument
successfully-a circumstance very important to scientific travellers, who often have not the means of carrying a complete collection of instruments along with them.

## Adjustments.

1. The wires should be set perfectly vertical.

This is verified by observing that any distant vertical object cut by a wire, does not change its position relative to that wire on moving the instrument up and down. If it does, the wires must be turned till the object is kept upon them when moved through their whole extent, and the adjustment is then complete.
2. The telescope should have no parallax.

When any distant object is bisected by the horizontal wire, if, on moving the eye up and down a little, the object should appear to separate from the wire, the instrument is said to have a parallax. This must be corrected by placing the object and eye-glasses at such a distance from each other that their foci may meet at the intersection of the wires. When, as is usually the case, the object-glass has been properly fixed by the maker, the observer has only to adjust the eye-glass.
3. The line of collimation should be correct.

This is known by bisecting any object by the meridian wire, and if, on reversing the axis, the object still remains bisected as before, the line of collimation is correct. If not, it must be adjusted by the small screws in the sides of the telescope, carrying the diaphragm near the eye-glass. This is effected by easing one screw and then tightening the other, till the error appears one-half diminished; after which the axis is again reversed, and the operation repeated till the adjustment is properly effected.

## 4. To level the axis.

This is performed by a screw under one of the $\mathbf{Y} s$, which raises or depresses that end of the axis at pleasure, while the true horizontal position is ascertained by the spiritlevel.
5. To bring the telescope into the meridian.

This is accomplished by a horizontal screw acting on one end of the axis, by which it is moved forward or backward till its proper position is obtained.

## 6. To prepare the telescope for observation:

Slide the eye-piece in or out till the wires are seen distinctly. Direct the telescope to some well-defined object, and turn the milled-head on the side of the transit till the abject is seen with perfect distinctness. Place the level on the axis, and bring the bubble to the middle by the screw which elevates or depresses one of the $\mathbf{Y s}_{\mathrm{s}}$, the axis of the transit will then be parallel to the horizon.

Having brought the object to the central vertical wire by means of the screws, which act horizontally on one of the Ys , observe whether the same point of the object is covered by the wire while the telescope is elevated or depressed, and if not, correct half the apparent deviation by turning round the cell which contains the wires. Now with the wire covering some well-defined distant object, take the instrument out of its Ys and carefully invert it, when, if the wire no longer bisects the same part of the object, correct half the error by means of the screws which act horizontally upon the wires, and the remaining half by the screws which act horizontally upon the Ys. Repeat this operation till the vertical wire covers the same part of the object in both positions of the telescope, and the live of sight will then be perpendicular to the axis.

## 7. To elevate the telescope to a given object.

This operation is performed by computing the altitude or zenith-distance, previously to any observation, and either by the circle on the extremity of the axis in small instruments, or those near the eye-end of the telescope in large ones, elevate it to the proper altitude or zenith-distance, as may be required.
8. To compute the altitude.

To the complement of the latitude add the declination, if they are of the same name, the sum will be the altitude; but subtract it, if of different names, and the remainder will be the altitude; when the object is between the zenith and the pole, of a contrary name to the latitude. If the object is between the zenith and the pole, of the same name with the latitude, the meridian altitude is equal to the sum of the latitude, and the polar distance of the object, when above the pole, but to their difference when below it.
9. To take a transit.

With the latitude of the place and the declination of the。object, compute its meridian altitude. When it is known by computation, or atherwise, to approach the meridian, elevate the telescope to the given altitude by one or other of the circles for that purpose. Now because the telescope inverts, the object will appear to come into the field of view from the west, and move towards the east. Mark, by the clock or chronometer, the time of transit over each wire, using a dark glass to save the eye when the sun is observed, and tabulate the result in the following manner :-

| Edinburgh, 1836. |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|
| Date. | Object observed. | Wires. |  |  |  |  |
|  |  | I. | II. | III. | Iv. | V. |
| Jan. 15. | Sun 1 Limb | 38.6 | 52.8 | $\begin{array}{ccc}\mathrm{h} & \mathrm{m} . \\ 19 & 44 & 8.0\end{array}$ | 21.4 | 35.8 |
|  | Sun 2 Limb | 58.6 | 12.8 | 4627.3 | 41.7 | 55.9 |
|  | $\boldsymbol{\alpha}$ Andromedæ | 11.2 | 26.2 | $23 \quad 5941.3$ | 56.4 | 11.6 |
|  |  |  |  |  |  |  |
| Correction of instrument . . . . . +0.93 |  |  |  |  |  |  |
| Correction of clock . . . . . . + 12.07 |  |  |  |  |  |  |
| Apparent right ascension observed <br> In like manner the second limb$\quad . \quad . \quad . \quad 194420.12$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Mean or that of the centre . . . . 194530.19 |  |  |  |  |  |  |
| Reduction of $\alpha$ Andromeda to III. wire . . 235941.34 |  |  |  |  |  |  |
| Correction of instrument . . . . . + 0.47 |  |  |  |  |  |  |
| Correction of clock . . . . . . . + 12.03 |  |  |  |  |  |  |
| Apparent right ascension observed . . . 235955.84 |  |  |  |  |  |  |

## To bring a transit-instrument into the meridian.

1. Let the time be accurately determined by absolute altitudes near the prime vertical, or by equal altitudes, as shewn in the explanation of Table XVIII. Having got the error of the clock or chronometer to be used in the observation, compute the time of transit of the object to be observed either in mean solar or sidereal time, according to which the time-piece is regulated, making due allowance for error and rate, as shewn in § 15 , pages $20,21,22,23$, \&c., then bring the telescope to the celestial object, when nearly upon the meridian; and by turning the horizontal screw, make the middle wire bisect the object at the instant of its computed transit, and the instrument will be
in the meridian. Should the object be the sun or moon, either limb must be observed; and, allowing for the time which the semidiameter takes to pass the meridian, that of the centre becomes known, or the limb, conversely.

To find the time that any star takes to pass from one wire to another in a transit-instrument, when that on the equinoctial is known.

Rule.-To the log secant of the star's declination, add the logarithm of the time in seconds at the equinoctial, the sum will be the logarithm of the time by the star.

Ex. On the 10th of May 1836, the declination of Capella was $45^{\circ} 49^{\prime} 32^{\prime \prime} \mathrm{N}$., what would be the time of passage of the star from one wire to another, when the time upon the equinoctial was $19^{8} .64$ ?

| Declination | $45^{\circ} 49^{\prime} 32^{\prime \prime}$ | N. secant | 0.156863 |
| :--- | :---: | :---: | :---: | ---: |
| Equinoctial time | $19^{\mathrm{s}} .64$ | log | 1.293141 |
| Star's time | $28^{\mathrm{s}} .18$ | $\log$ | 1.450004 |

This may be readily performed by a Table of Natural Secants, like that among my General Tables (XXV.); thus, $19^{\mathrm{s}} .64 \times 1.435=28^{8} .19$. Hence the star's expected time of approach to the other wires becomes known after the first contact is observed.
2. To place a transit-instrument in the meridian by $\mathbf{P o -}$ laris.

On the 1st of May 1840, let a transit-instrument be placed in the meridian at Edinburgh, in latitude $55^{\circ} 57^{\prime} 24^{\prime \prime} \mathrm{N}$., longitude, in time, $12^{\mathrm{m}} 43^{\mathrm{s}} .5 \mathrm{~W}$.

By the Nautical Almanac, the right ascension of Polaris is $1^{\mathrm{h}} 1^{\mathrm{m}} 16^{\mathrm{s}} .40$, and declination $88^{\circ} 27^{\prime} 23^{\prime \prime} .4 \mathrm{~N}$.

Whence, by § 8, page 132.


Hence $57^{\circ} 30^{\prime} 0^{\prime \prime}$ is the star's altitude above the pole, or at its upper transit, and $54^{\circ} 24^{\prime} 48^{\prime \prime}$ at its lower transit under the pole. The complements of these will give the ze-nith-distances.

Now, let the clock be regulated truly to sidereal time, and when it shews $1^{\mathrm{h}} 1^{\mathrm{m}} 16^{6} .4$, make the middle wire bisect Polaris, then will the instrument be in the meridian. If the time-piece be regulated to mean solar time, the mean time of transit must be computed as shewn in the explanation of Tables XXVI. and XXVII., illustrated by the example in page 24.
3. To place a transit-instrument in the meridian by a pair of circumpolar stars, differing nearly twelve hours in right ascension.

Let $t=$ the time of the first star's upper transit, and $t^{\prime}=$ that of its lower ; also let $r$ and $r^{\prime}$ be the times of the contrary passages of the second star. Now, if $\delta=$ the polar distance of the former star, $\delta^{\prime}$ that of the latter, while $\alpha$ is the error in azimuth, and $l$ the latitude.

$$
\begin{equation*}
\alpha=\frac{1}{2}\left\{(t-\tau)-\left(t^{\prime}-\tau^{\prime}\right)\right\} \sec l \sin \left(\delta \sim \delta^{\prime}\right) \tag{1}
\end{equation*}
$$

Ex. On the 1st of January 1828, when the right ascension of the pole-star, by the Nautical Almanac, was $0^{\mathrm{h}} 59^{\mathrm{m}} 28^{\mathrm{s}} .8$, the polar distance $1^{\circ} 36^{\prime \prime} 9^{\prime \prime}$; the right ascension of $\zeta$ Ursæ Majoris was $13^{\mathrm{h}} 16^{\mathrm{m}} 58^{\mathrm{s}} .3$, the polar distance $34^{\circ} 10^{\prime} 44^{\prime \prime}$; when the clock of an observatory in latitude $52^{\circ} 25^{\prime} 50^{\prime \prime} \mathrm{N}$. was regulated properly, and its error and rate allowed for, the times of four passages taken by the transit-instrument placed a little out of the meridian, but otherwise well adjusted, were as follow :

| Pole-star above | ${ }_{1}^{\text {h. }}$ | ${ }_{0} \mathrm{~m}$ | 8.55 | below |  | $\stackrel{m}{58}$ |  | ${ }^{2} 5.4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\zeta$ Ursæ Maj. below | 1 | 16 | 55.46 | above |  | 16 |  | 8. |
| $t-r$ | - | 16 | 54.91 | $t^{\prime}-r^{\prime}=$ |  | 18 |  | 2.6 |
| $t^{\prime}-t^{\prime}$ | - | 18 | 2.69 |  |  |  |  |  |
| $(t-r)-\left(t^{\prime}-r^{\prime}\right)=$ | $+$ | 1 | 7.78 | $7^{\cdot} .78=$ |  |  |  |  |

Now, as $t^{\prime}-r^{\prime}$, the second interval, exceeds $t-r$, the first, the deviation is towards the east, while the difference is 67.78. But, in using formula (1), the error a may be computed either in time or $\operatorname{arc}_{2}$ as best suits the observer, or the knowledge he has of the value of a turn of his screws, which he should previously ascertain, at least in an approximate manner. Then, if he wish the correction in time, the constant logarithm will be the arithmetical complement of the $\log$ of 2 , or 9.698970 ; if in arcs, the $\log$ of $\frac{15}{2}=7.5$, or 0.875061 is the constant.

| In Time. |  | In Arc. |  |
| :---: | :---: | :---: | :---: |
| 1. Const. $\log$ | 9.698970 | 2. Const. log | 0.875061 |
| $\delta=1^{\circ} 36^{\prime} \cdot 9^{\prime \prime} \sin$ | 8.446619 |  | 8.446619 |
| $\delta^{\prime}=341044 \mathrm{sin}$ | 9.749565 |  | 9.749565 |
| $\gamma^{\prime}-\delta=323435$ cosec | 0.268876 |  | 0.268876 |
| $l=522550 \mathrm{sec}$ | 0.214868 |  | 0.214868 |
| $\Delta=67{ }^{8.78} \log$ | 1.831102 |  | 1.831102 |
| $\alpha=1^{8.622} \log$ | 0.210000 | $\alpha=24^{\prime \prime} .33 \mathrm{log}$ | 1.386091 |

the respective deviations in time and arc towards the east.
4. To place a transit-instrument in the meridian by a 7air of high and low stars.

If the difference of the right ascensions of two stars, of which the declinations are $\delta$ and $\delta^{\prime}$, be $\alpha$, and if a transitinstrument be placed $s$ seconds of time out of the meridian, the interval between their transits will be $\alpha+d \alpha$ seconds of time, and $d a$ may be found from the following formula, in which $l$ is the latitude.

$$
\begin{equation*}
d \alpha=8 \cos l \sin \left(\delta \sim \delta^{\prime}\right) \sec \delta \sec \delta \tag{2}
\end{equation*}
$$

Let $p=\mathrm{D} \sin (l-\delta) \sec \delta$. . . . . (3)
in which $\delta$ is negative when of a contrary name to $l$, and D the deviation or error in the position of the transit.

Now making $n=\sin (l-\delta) \sec \delta$
then $p=n \mathrm{D}$ and $p^{\prime}=n^{\prime} \mathrm{D}$, and hence

$$
\begin{equation*}
\mathrm{D}=\frac{p-p^{\prime}}{n-n^{\prime}} \tag{Б}
\end{equation*}
$$

Again, let $\alpha$ be the calculated transit or true right ascension of the first star, and $t$ the observed transit, consequently $p=t-t^{\prime}$, and $a^{\prime}$ being the right ascension of the second star $p^{\prime}=\alpha-\alpha^{\prime}$, therefore

$$
\begin{equation*}
\mathrm{D}=\frac{(t-t)-\left(\alpha-\alpha^{\prime}\right)}{n-n^{\prime}} \tag{6}
\end{equation*}
$$

If the clock does not keep true time, the interval must be corrected for the rate. Then, if $\mathbf{D}$ be positive, the instrument deviates to the west; if negative, to the east, and the correction may be made by the divided head of the adjust-ing-screw, while the operation is performed as follows:

Ex. 1. On the 1st of April 1840, the following observations were made in latitude $51^{\circ} 30^{\prime}$ N., and nearly on the meridian of Greenwich.

$$
\begin{aligned}
& \begin{aligned}
t-t^{\prime} & =156.62 \alpha-\alpha^{\prime}=158.22 \\
a-\alpha^{\prime} & =158.22
\end{aligned} \\
& \Delta=\left(t-t^{\prime}\right)-\left(\alpha-\alpha^{\prime}\right)=-1.60
\end{aligned}
$$

Whence, to get D , it is only necessary to compute $n$ and $n^{\prime}$, and, by combining formulæ (4) and (6), the value of $D$ and $D^{\prime}$ at the two stars will be found.

Here D is negative, and the deviation of the telescope is towards the east, but when positive it is to the west.*

See my Mathematical Tables and General Astronomical Tables on this subject.

| Here $t-\alpha=$ | 43.40, | and $t^{\prime}-a^{\prime}=$ | $\frac{\text { s. }}{45.00}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{D}^{\prime}$ with Cont. sign | +1.91 | D with Cont. sign | +0.31 |
| Error of clock $=$ | 45.21 | fast, or | 45.3 |

Or the result may be stated thus:

| Capella's R. A. |  | ${ }_{6}^{\text {m. }} 51.30$ | Rigel's R. A. | ${ }_{5}^{\text {h. }}$ |  | $4{ }_{5}^{\text {s. }}$ s.08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}^{\prime}$ | - | 1.91 | D | - |  | 0.31 |
| Time by transit |  | 649.39 |  | 5 |  | 452.77 |
| ... by clock | 5 | 734.70 |  | 5 |  | 538.08 |
| Error of clock fast |  | 45.31 |  |  |  | 45.31 |
| Correction of clock |  | -45.31 | in sidereal time. |  |  |  |

If the clock is regulated according to mean time, the interval $t-t^{\prime}$ must be, by Table XXVI., converted into sidereal.

* If $\mathrm{D}=\frac{\left(\alpha-\alpha^{\prime}\right)-\left(t-t^{\prime}\right)}{n-n^{\prime}}$, then the sign of D would give the correction of the observed time with its proper sign, which would be the contrary of those stated above.

Ex. 2. On the 24th of April 1828, the following observations were made at Paris on $\gamma$ Ursæ Majoris above the pole, and on $\beta$ Cephei under the pole.

$$
\begin{aligned}
& \beta \text { Cephei } \quad t^{\prime}=925 \text { 54.80, } \quad \alpha^{\prime}=92624.49, \quad n=+2.542 \\
& t-t^{\prime}=\overline{21819.00}, \alpha-\alpha^{\prime}=\overline{21822.61}, n^{\prime}-n=-\overline{2.718} \\
& \alpha-\alpha^{\prime}=21822.61 \\
& \Delta=\overline{-} \quad 3.61 \text { to the right. }
\end{aligned}
$$

Hence making $x=\frac{-3.61}{-2.718}=+1^{8} .33$, we have

Remark 1. If, when a circumpolar star is observed between the pole and the zenith of the upper meridian, the same formulas apply, since $n$ is then negative, because $d$ exceeds $l$.
2. If the transit is taken between the pole and the horizon, the same formulas will still answer, by diminishing the right ascension of the star by $12^{\mathrm{h}}$, and changing the sign of $d$. The deviation of the telescope pointing to the north is still reckoned to the right, when $x$ is positive; but here this side is found towards the east. The contrary takes place when $x$ is negative. When two circumpolar stars are observed, the same remark is applicable to both.
3. When the same star is observed at both passages, superior and inferior, the preceding rule is applicable to both,
the right ascension of the star must be diminished by $12^{h}$ for the inferior passage, and the sign of $d$ must be changed.

Since the sheet containing page 58 was thrown off, it has been discovered that formula (4) should have been

$$
\sin \frac{t}{y} H=\left\{\frac{1}{8}\left(1 \pm \sec D_{l}[\sin (D+D) \sin (D-D)]^{\prime}\right)\right\}^{1}
$$

By reflecting on the steps of the investigation, it appears that

$$
\text { 5. } \operatorname{Sin}\left(H-90^{\circ}\right)=\sec \mathrm{D},\left\{\sin \left(\mathrm{D}+\mathrm{D}_{l}\right) \sin \left(\mathrm{D}-\mathrm{D}_{九}\right)\right\}^{\ddagger} \text {. }
$$

Because D, is always a small arc, its secant differs little from radius, therefore its effect will be nearly insensible ; hence,

$$
\begin{aligned}
& \text { 1. } \mathrm{H}-90^{\circ}=2^{\circ} 7^{\prime} 42^{\prime \prime} .3 \quad \text {. . . . } \operatorname{sine} 8.569835 \\
& \text { 2. } \mathrm{H}-90^{\circ}=2^{\circ} 7^{\prime} 43^{\prime \prime} .2 \text {. . . . } \frac{0.000051}{8.569886}
\end{aligned}
$$

The second value, therefore, exceeds the first by $1^{\prime \prime}$ only, a difference of little consequence in this problem.

## EXPLANATION OF THE TABLES.

## Table I. Depression or Dip of the Horizon.

The dip of the horizon is the angle contained between a line perpendicular to the plumb-line, passing through the eye of the observer, elevated above the level of the sea, and a line from his eye to the visible horizon when they are in the same vertical plane. This table contains the apparent dip answering to a free unobstructed horizon, diminished by 0.08 of itself, or of the intercepted arc for the effects of refraction.

1. The numbers in the table corresponding to the height of the eye of the observer, is to be subtracted from the observed altitude when taken by the fore observation with Hadley's quadrant and similar instruments, but added to it in case the altitude be taken by the back observation.
2. This has been the principal use to which analogous tables have hitherto been applied, but it may be often advantageously employed for other purposes, which has been an inducement to extend it a little beyond the usual limits. Since the true dip has been diminished by 0.08 or about $\frac{1}{12}$ of itself to reduce it to the apparent, it consequently follows that if the apparent dip be increased by double of 0.08 , or 0.16 , equal to $\frac{1}{6}$ of itself nearly, the result will be the distance of the visible horizon in geographical miles.
3. If the apparent dip be measured with a good theodolite or astronomical circle, the corresponding height of the in-
strument above the sea, will be found by the table with as much accuracy as the nature of the horizontal refraction /will admit.

Examples.-1. To the height of the eye, 16 feet in the first column, will be found $3^{\prime} 56^{\prime \prime}$, the dip in the second.
2. To the height of the eye, 500 feet,

3. From a point on Inchcolm the author observed the depression of the horizon of the sea down the Firth of Forth to be $8^{\prime} 21 .{ }^{\prime \prime} 2$; required the height of the instrument above the sea?

By the table to dip . . $=8^{\prime} 14^{\prime \prime}$ the height is 70 feet. Proportional part to . . 7.2 . +2.1 feet. Height of instrument for . $\overline{821.2}=\overline{72.1}$ feet.

## Table II. Correction of the Apparent Altitudes of the Sun and Stars.

In this table the altitude is found in the first column, the star's correction or mean refraction in the second, and the difference between the mean refraction and the sun's mean parallax, constituting the sun's correction in the third.

Examples.-1. Required the correction of the altitude of a star which was observed to be $22^{\circ} 30^{\prime}$ ?

Answer . . . . . $2^{\prime} 20^{\prime \prime} .0$.
2. Required the sun's correction at an altitude of $31^{\circ} 20^{\prime}$ ?

Answer . . . . . . $1^{\prime} 36^{\prime \prime}$.3.
These are the true corrections when the English barometer stands at 30 inches, and Fahrenheit's thermometer at $50^{\circ}$, and are always to be subtracted from the apparent
altitude or added to the apparent zenith distance to obtain the true.

## Table III. To correct the Mean Refraction.

When the barometer differs from 30 inches, and the thermometer from $50^{\circ}$, the mean corrections, as above, may be reduced for the effects of pressure and temperature by this table with sufficient accuracy, when altitudes are taken with the ordinary theodolite or sextant. These corrections must be applied according to the signs in the table. Thus, in the first example to the preceding table, let the observed height of the barometer $b=29^{\text {in }} .57$, and the temperature by Fahrenheit's thermometer $t=84^{\circ}$, then

or the star's correction to be subtracted.
In like manner for the second example,

| To the mean correction | $1^{\prime} 36{ }^{\prime \prime} .3$ |
| :---: | :---: |
| For altitude $31^{\circ} 20^{\prime}$, and $b=30$ iц 28 | + 1.0 |
| For altitude 3120 and $t=30^{\circ}$ Fahrenheit | $7 \quad 4.0$ |
| The sun's true correction |  |

and so on in similar cases.
Table IV. Correction of the Apparent Altitude of the Moon.
This table contains the difference between the moon's parallax in altitude and the mean refraction, and must be always added to the apparent altitude to obtain the time. To the moon's apparent altitude in the first column on the left, and under the minutes in the moon's horizontal parallax at the top, will be found the correction for the nearest less degree of altitude and minute of parallax ; and the propor-
tional parts for minutes of altitude and seconds of parallax, are found in the two adjacent right hand columns, taking care not to neglect the parts to $o^{\prime}$ of altitude, as for the sake of the convenience of having all the parts additive, the construction of the table requires.

Example 1.-Let the moon's apparent altitude be $32^{\circ} 40^{\prime}$, and the equatorial horizontal parallax $58^{\prime} 32^{\prime \prime}$; required the true correction when the barometer stood at 29.6 inches, and Fahrenheit's thermometer at $72^{\circ}$ ?

| To app. altitude $32^{\circ}$ and horizontal parallax | correc. | + $47^{\prime} 10^{\prime \prime}$ |
| :---: | :---: | :---: |
| To app. altitude $0^{\circ} 40^{\prime}$ proportional parts | - . | $+\quad 10$ |
| To seconds of parallax 32" | - | 27 |
| True correction for $b=30^{\circ}$, and $t=50^{\circ}$ |  | 4747 |
| To $b=29^{\text {in }} .6$ and altitude $32^{\circ} 40^{\prime}$ correction |  |  |
| To $t=72^{\circ}$ and altitude $32^{\circ} 40^{\circ}$ correction |  |  |
| True correction |  | 4752 |

for real temperature and pressure, where, according to the remark at the foot of Table III, the corrections depending upon $b$ and $t$ have been applied with signs contrary to those marked in the table.

## Table V. Mean Refractions.

This table contains the logarithms of the mean refractions at 30 inches of the English barometer, and $50^{\circ}$ of Fahrenheit's thermometer. It is succeeded by Tables VI., VII., VIII., IX., and X., to reduce it to any other pressure and temperature, either for the English barometer and Fahrenheit's thermometer by the first three auxiliary tables, or for the metrical barometer and centigrade thermometer by the two last, in which the logarithms for $r$ and $t$ are, as is frequently the case, united in one with the argument $t$, a method that in general cannot sensibly affect the accuracy of
the results. Logarithmic tables of refraction are used by all astronomers where extreme precision, combined with facility of calculation, are required.

Examplis-1. Let the zenith-distance $\theta$ be $68^{\circ} 55^{\prime} 36^{\prime \prime}$, the barometer $b=28.80$ inches, and the thermometers $r$ and $t$ each $65^{\circ}$ Fahrenheit ; required the refraction?

2. Let $\theta=87^{\circ} 42^{\prime} 10^{\prime \prime}, b=29^{\text {in }} .50$, $\tau$ and $t=35^{\circ}$; required $r$, the refraction?

| For $\theta=87^{\circ} 40^{\prime} 0^{\prime \prime} \log \delta \theta$ | 3.00522 |
| :---: | :---: |
| Prop. parts for 210 | 392 |
| $b=29^{\text {in }} .50$. $\log$ as before | 9.99270 |
| $r=35^{\circ}$. . $\log$ | 0.00065 |
| $t=35^{\circ} . . \log$ | 0.01379 |
| $r^{\prime \prime}=$ | $1038{ }^{\prime \prime} .20 \log 3.01628$ |
| $\frac{d \delta \theta}{d \tau} \times\left(35^{\circ}-50^{\circ}\right)=-0^{\prime} .591 \times-15^{\circ}=$ | + 8.86 |
| $\frac{\partial d \theta}{d p} \times\left(29^{\text {in }} .5-30^{\mathrm{in}}\right)=+1^{\prime \prime} .04 \times-0.5=$ | - 0.52 |
| $r=$ | $1046.54=17^{\prime} 26^{\prime \prime} .54$ |
| $r$ as observed by Brinkley | 1726.50 |
| Difference between theory and obs | tion . +0.04 |

3. Let $\theta=88^{\circ} 24^{\prime} 9^{\prime \prime} .7$, the metrical barometer $b=755$ millimetres, and $r$ and $t$ each $8^{\circ} .75$ centigrade; requird the refraction?

| $=$ | $88^{\circ} 24^{\prime} 9^{\prime \prime} .7$ | $\log \delta \theta$ |  | 3.08937 |
| :---: | :---: | :---: | :---: | :---: |
| $b=$ | $755^{\text {mm }}$ | $\log$ (Table IX.) |  | 9.99599 |
| $=$ | $8^{\circ} .75$ cent. | $\log$ (Table X.) | . $\cdot$ | 0.00216 |
| $r^{\prime \prime}$ | . . . | . . . | 1223 " 23 log | 3.08752 |

$$
\begin{aligned}
& 1223^{\prime \prime} .23 \log 3.08752 \\
& \frac{d \delta \theta}{d \rho} \times\left(8^{\circ} .75-10^{\circ}\right)=0^{\prime} .91 \times-1.25 \times 1.8=+2.05 \\
& \frac{d \delta \theta}{d p}\left(755^{\mathrm{mm}}-762^{\mathrm{m} . \mathrm{m}}\right)=+1.62 \times-7 \div 40^{\mathrm{m}}=-0.28 \\
& r \text {. . . . . . }=1225.00=2 \sigma^{\prime} 25^{\prime \prime} .00 \\
& r \text { from observation by Plana . . . . . } 2024.30 \\
& \text { Difference of theory from observation . . }+0.70
\end{aligned}
$$

From these instances it is evident that the table gives the value of the refraction with great accuracy. It must be added to the zenith distance and subtracted from the altitude. The reason that the first small correction of $r$ is multiplied by $1^{\circ} .8$ is, that $1^{\circ}$ centigrade is equal to $1^{\circ} .8$ Fahrenheit, that to which the corrections in the table are adapted, and as $39^{\text {in }} .371$ are equal to a metre, the second must be divided by this or even by 40 , as sufficiently accurate.

## Table XI. Logarithms to compute the value of the Coefficient of Terrestrial Refraction.

In the practice of Trigonometrical Levelling it is of the utmost importance to get the value of terrestrial refraction truly. Hitherto it has generally been the practice to determine occasionally from numerous observations, its mean value by reciprocal and simultaneous measures, and to employ it either exactly as obtained, or under assumed variations in all cases. Reflecting on the inaccuracy of this plan, I endeavoured to investigate a formula which would give, with as much precision as the nature of the case seemed to admit, the value of the coefficient of terrestrial refraction, and from which the present table has been derived.*

Example.-Let the barometer $b=29.75$ inches, the attached

[^12]thermometer $r=64^{\circ}$, and the detached $t=64^{\circ}$ Fahrenheit; required $n$ the coefficient of refraction?
For $b=29^{\text {in }} .75$ and $t=64^{\circ}$ (Table XI.) . $\log 7.44997$
$r=64^{\circ} \log$ (Table VII.) . . 9.99940
$t=64^{\circ} \log \times 2$ (Table VIII.) . . 9.97502
$b=29.75 \log . \quad . \quad . \quad . \quad 1.47349$
$n=0.07905 \log \quad . \quad$. . 8.89788
Table XII. Parallax of the Sun in Alititude or Zenith Distance.
The parallax of the sun on the first day of each month at the top, and to every third degree of altitude in the left hand column, or zenith distance on the right, will be obtained from this table by inspection, and for any intermediate day or degree it may be readily found by interpolation, as will be subsequently exemplified.

## Table XIII. Parallax of the Planets in Altitude or Zenith Distance.

This is precisely similar to the last, and is used in the same manner.

Example. Required the parallax of Venus at an altitude of $30^{\circ}$ on the 1st of December 1840, when the horizontal parallax was $122^{\prime \prime} .6$ ?


Hence the parallax in altitude is found to be $10^{\prime \prime} .9$.

## Table XIV. Augmentation of the Moon's Semidiameter in Altitude or Zenith-Distance.

With the moon's semidiameter at the top, and altitude on the left, or zenith-distance on the right-hand column, will be found the augmentation to be added to the semidiameter on that account.

Table XV. Reduction of the Moon's Parallax on the Spheroid.
With the moon's equatorial horizontal parallax at the top, and the latitude on the left-hand column, the reduction to be subtracted from the moon's equatorial horizontal parallax, to reduce it to the given latitude, will be found.

## Table XVI. Reduction of the Latitude on the Spheroid.

With the observed latitude on the left, the reduction will be found on the right, to be subtracted from the observed latitude, to get the reduced latitude, or that referred to the centre of the earth, considered as a spheroid of $\frac{1}{300}$ of compression.

## Table XVII. Reduction to the Meridian.

The method of determining the latitude by repeated observations near the meridian, makes the smaller classes of instruments much more efficient than they otherwise would be. Indeed it renders them much more nearly equal to the larger classes of instruments, such as the mural circles, than could have been anticipated. There are various methods of accomplishing this. In many cases the numbers in the table are given in seconds of arc and decimals, in others they are merely versines. The late Dr Thomas Young first gave, I believe, a small table of versines for this purpose, similar to ours. I have, however, extended the numbers in the column titled V to one place more than his, which includes quantities to the first order only. To this I have added another column $v$, entirely omitted in Young's, embracing quantities to the second order in the formula, which cannot be dispensed with when the zenithdistance is small, not greater than about $10^{\circ}$, and the time extending to about ten minutes from the meridian, \&c.

In this way the numbers are all integers, which, by those
not very familiar with decimal fractions, render them more easily manageable ; while, by means of the logarithms corresponding to the number of observations at the end of the table, the results will be readily converted into seconds of arc. The observations are generally taken in pairs, and therefore logarithms of the even numbers will generally be enough, though the logarithm for one observation, which may occasionally be required, is also given.

Example 1. Required the values of $V$ and $v$ for $12^{m} 36^{8}$ from the meridian?

By the table, under $12^{\mathrm{m}}$ at the top, and opposite $36^{\mathrm{s}}$ in the left-hand column, will be found $\mathrm{V}=15109$, and $v=2283$.
2. Let the time from the meridian exceed the limits of the table, then the value of V to half the time being $q u a$ drupled, will be the value to the whole time nearly; and the value of $v$ to half the time multiplied by 16 will give the value of $v$ also for the whole time nearly.

Thus, let the time be $20^{\mathrm{m}} 40^{\mathrm{s}}$, then to one-half of this, or $10^{\mathrm{m}} 20^{\mathrm{s}}, \mathrm{V}^{\prime}=10163$ and $v^{\prime}=1033$, whence $\mathrm{V}=10163 \times 4$ $=40652$, and $v=1033 \times 16=16528$ nearly. The true values of these, by direct calculation, being $V=40630$ and $v=16508$. The differences would not materially affect the accuracy of the final result in any ordinary case, especially when combined with a number of other values near the meridian within the limits of the table. It would not be desirable, however, to extend observations beyond the limits of the table; and it would be conducive to accuracy to take always an equal number of observations nearly equidistant, on each side of the meridian, to avoid, as far as possible, the effects of any little uncertainty in the time.

If the sun be the object, the observations should be taken
by a watch shewing mean solar time,-if a star, by a watch shewing sidereal time.

If the sun be the object, and the watch regulated to sidereal time, $V$ must be multiplied by 0.9945466 , the square of the number to convert sidereal into mean solar time, of which the logarithm is 9.997625 ; and if the watch be regulated to mean solar time when a star is observed, V. must be multiplied by 1.0054833 , of which the $\log$ is 0.002375 , to convert the effect from mean solar into that from sidereal time.

When the watch does not go accurately to either times, thevalue of $V$ must be further multiplied by $1+0.00002315 r$, whose $\log$ is $0.000010053 r$, in which $r$ is the rate of the watch, reckoned PLUS when Losing, and minus when gaining. When $r$ is negative, the arithmetical complement of the $\log$ denoted by $0.000010053 r$ must be taken.

If these rates be small, and the distance from the meridian moderate, their effects will hardly be sensible.

When the zenith-distance exceeds $30^{\circ}$, the first term of formula (6), page 18 , will be sufficient ; and if the object is below the pole, the reduction must be applied with a contrary sign.

On applying this table in formulæ (11) and (12), page 32, $d l$ is positive when the star is above the pole, negative when below it; $d m$ is positive when the star is in the semicircle farthest from the referring lamp or staff, negative when nearest. Consequently, in page 33, line 12 from the bottom, the reduction to the centre was really $-33^{\prime \prime} .18$, but to render $d m$ positive, so that all the columns might be added, the double of $-1^{\prime \prime} .26$, the mean of these, or $-2^{\prime \prime} .52$, was added to $-33^{\prime \prime} .18$, making it $-35^{\prime \prime} .70$, which artifices are admissible, at the option of the computer, when they conduce to facility or convenience.

## Table XVIII. Logarithms to compute the Equation to Equal Altitudes and Equal Azimuths.

The first column in this table contains the elapsed time between the observations, and is the common argument to the other three columns A, B, C. The two first, A and B, are employed to compute the equation to equal altitudes in seconds of time, and $C$ to compute the equation to equal azimuths in seconds of arc.

The computation of the equation to equal altitudes is performed by the following rules.

1. To the $\log \mathrm{A}$, from Table XVIII., add the $\log$ tangent of the latitude, the log of the hourly variation of the sun's declination from the Nautical Almanac, to be marked positive, or + , when the polar distance is increasing, and negative, or - , when decreasing; the sum of these three logarithms will be the $\log$ of part first of the equation for noon. The signs must be reversed for midnight.
2. To $\log \mathbf{B}$ add the $\log$ tangent of the declination to be reckoned positive, if the polar distance is less than $90^{\circ}$, but negative, if greater ; and the $\log$ of the sun's hourly variation reckoned positive, if the polar distance is decreasing, but negative, if increasing; the sum will be the $\log$ of the second part of the equation for noon or midnight.
3. To the $\log \mathbf{C}$, from Table XVIII., add the $\log$ cosecant of the latitude, and the log of the sun's hourly motion from the Nautical Almanac, the sum will be the equation to equal azimuths, in seconds of arc, to be allowed to the left of the meridian indicated on the horizontal circle for the noon of the same day, when the polar distance is decreasing,' but to the right if increasing. The signs must be reversed for midnight, or the correction for the meridian must be allowed to the right when the polar distance is decreasing, but to the left when increasing.

Example 1. At Madeira, in latitude $32^{\circ} 38^{\prime} 25^{\prime \prime}$ N., longitude $1^{\text {b }} 7^{\mathrm{m}} 35^{\mathrm{s}} \mathrm{W}$., on the 8th of August 1840, at $9^{\mathrm{h}} 55^{\mathrm{m}} 34^{\mathrm{s}} .2$ forenoon, and $4^{\mathrm{h}} 26^{\mathrm{m}} 26^{\mathrm{s}} .5$ afternoon, by chronometer, the sun had equal altitudes; required the time of apparent noon?

$\log \mathrm{A} \cdot \quad \cdot+9.4599 \log \mathrm{~B} \quad . \quad . \quad+9.2779$
Lat. $32^{\circ} 38^{\prime} .4$ N. tan +9.8065 Dec. $16^{\circ} 4^{\prime}$ N. tan +9.4594
$\delta d=+43^{\prime \prime} .17 \log +1.6352$. . . . -1.6352
1st part $+7^{\mathrm{s}} .97 \log +0.9016 .2 \mathrm{~d}$ part $=-2^{\mathrm{s}} .36 \log -0.3725$ 2d part - 2.36
E. E. A. $+5.61+13^{\mathrm{h}} 11^{\mathrm{m}} 0^{\mathrm{s}} .35-12^{\mathrm{h}}$. (App. noon) $1^{\mathrm{h}} 11^{\mathrm{m}} 5^{\mathrm{s}} .99$
2. At the same place in August 1840.

> August 8th, P. m. and August 9th, A. m.


Equation to equal altitudes for Midnight.

| $\log A$ | +9.8895 | Log B | -9.7082 |
| :---: | :---: | :---: | :---: |
| Lat. $32^{\circ} 38^{\prime} .4 \mathrm{~N}$. ta | +9.8065 | Dec. $15^{\circ} 56^{\prime} \mathrm{N}$. | + 9.4556 |
| ठ $d=-43^{\prime \prime} .45 \quad \log$ | -1.6380 |  | -1.6380 |
| 1st term $-21^{\text {s. }} .58 \log$ <br> 2 d term +6.34 | $1.3340$ | 2 d term $+6^{\text {s }} .34$ | $\log +0.8018$ |
| E. A. - | 4 | -12 ${ }^{\text {h }}$ (Midn.) $=$ | 11. |

3. On the 28th of February 1840 , in latitude $55^{\circ} 57^{\prime}$ N., longitude $12^{\mathrm{m}} 43^{s} .5 \mathrm{~W}$., in an interval of $5^{\mathrm{h}} 30^{\mathrm{m}} 0^{\mathrm{s}}$, the sun had equal altitudes when the azimuth circle read $130^{\circ} 10^{\prime} 15^{\prime \prime}$ and $32^{\circ} 36^{\prime} 15^{\prime \prime}$, and consequently the middle point $=\frac{1}{2}\left(130^{\circ} 10^{\prime} 15^{\prime \prime}+32^{\circ} 36^{\prime} 15^{\prime \prime}\right)=$ $81^{\circ} 23^{\prime} 15^{\prime \prime}$; required the true meridian point ?

| To interval $5^{\text {h }} 30^{\mathrm{m}} 0^{\text {s }} \log \mathrm{C}$ | 0.6202 |
| :---: | :---: |
| Latitude $55^{\circ} 57^{\prime} \mathrm{N} . \log$ secant | 0.2519 |
| ס $d=56^{\prime \prime} .69 \mathrm{log}$ | 1.7535 |
| E. E. Az. $\quad 7^{\prime} 2^{\prime \prime} .3=422^{\prime \prime} .3$ | $\log 2.6256$ |


is the reading of the instrument when set to the true meridian.

## Table XIX. Logarithms to convert Feet on the Surface of the Terrestrial Spheroid into Seconds of Arc, and conversely.

This table, of great use in Trigonometrical Surveying, contains the logarithms of the reciprocals of the radii of curvature in any given direction multiplied by the arc, equal to the radius in seconds. $\log M$ are those on the meridian, Log $P$ those on an arc perpendicular to the meridian, and $\log \mathrm{O}$ those in any direction indicated by the azimuth $\alpha$ or $Z$. The differences for each degree in $M$ and $P$ are given, to interpolate more easily for minutes of latitude.

Examples. Required the $\log \mathrm{M}$ for latitude $51^{\circ} 13.5$, the $\log P$ for $50^{\circ} 58^{\prime} .3$, and the $\log O$ for latitude $56^{\circ} 4^{\prime} .5$, and $\alpha$ or $Z=$ S. $106^{\circ} 46^{\prime} .4 \mathrm{~W}$.


The numbers from Tables XX. and XXI. are taken out in the same manner.

## Table XXII. Reduction of $\lambda$ to $l$.

This table, computed from the formula $p^{\prime \prime 2} \frac{1}{2} \sin 1^{\prime \prime} \tan \lambda$, in which $\lambda$ is the latitude of the foot of the perpendicular arc from the given station on the meridian passing through that required, and $p^{\prime \prime}$ the length of that arc itself in seconds of arc, gives to $\lambda$ at the top of the page, and $p^{\prime \prime}$ in the lefthand column, in minutes, a small correction within its limits to be subtracted from $\lambda$ to give $l$, the true latitude of the required point, derived trigonometrically from the first. If the quantity is not got at sight, it may be easily found by interpolation.

## Table XXIII.

This table is the same in principle as the last, but extended to every degree through the British Islands, for the purpose of facilitating calculations made within its range.

Example. Required the reduction of $\lambda$ to $l$, when $\lambda=57^{\circ} 51^{\prime} 4.5^{\prime \prime}$, and $p^{\prime \prime}=24^{\prime} 36^{\prime \prime}$ ?


Table XXIV. To reduce a Base at the level of the Sea to any height above it, or from any height above the Sea to its level. .
Example 1. Required the length of the chord $K$, when the are $a$ is 164045 feet, and height above the sea $h=6562$ feet ?



This table, therefore, serves to reduce bases from the level of the sea to great heights, for the purpose of accurate trigonometrical levelling, or for reducing a measured base to the level of the sea, in order to extend a series of triangles at that level over a tract of country.

## Table XXV. The measure of one Minute of Arc in feet at each

 degree of latitude.As the latitudes and longitudes of a number of places throughout the British Isles will shortly be made known in the volumes of the Trigonometrical Survey, then, by taking a few angles, and either measuring a base carefully, or, if possible, selecting a distance from the survey, the position of any particular point at a moderate distance may be readily fixed by means of this table.

Example. In the Island of Iona, Carn Cul ri Eirn is south of Carn Dunii 9955 feet, and west of it 8111 feet; required the latitude and longitude of Carn Cul ri Eirn, those of Dunii being $56^{\circ} 20^{\prime} 33^{\prime \prime}$ N., longitude $6^{\circ} 23^{\prime} 36^{\prime \prime} \mathrm{W}$. ?

By the table, $1^{\prime}$ of latitude at $56^{\circ} \cdot 20^{\prime}$ is 6087.2 feet, therefore $9955 \div 6087.2=1^{\prime} .65=1^{\prime} 39^{\prime \prime}$ S. Hence $56^{\circ} 20^{\prime} 33^{\prime}-$ $1^{\prime} 39^{\prime \prime}=56^{\circ} 18^{\prime} 54^{\prime \prime}$ N., the latitude of Carn Cul ri Eirn.

In like manner, the length of a minute of longitude is 3381.3 feet ; hence $8111 \div 3381.3=2^{\prime} .4=2^{\prime} 24^{\prime \prime}$, therefore
$6^{\circ} 23^{\prime} 36^{\prime \prime}+2^{\prime} 24^{\prime \prime}=6^{\circ} 26^{\prime} 0^{\prime \prime} \mathrm{W}$., the longitude of Carn Cul ri Eirn.

Table XXVI. To convert Mean Solar into Sidereal Time.
This table gives the quantity to be ADDED, as expressed at the top of the table, or the acceleration, as it is generally called, at the bottom, to be added to any quantity of mean time, to reduce it to sidereal.

## Table XXVII. To convert Sidereal into Mean Solar Time.

This table gives a portion of time to be subtracted (and therefore called retardation) from a known portion of sidereal time, to reduce it to mean time.

The conversion of the time of any phenomenon recorded in sidereal time, into that by mean solar time, and conversely, may be performed in the following manner :-
Let $m$ be the mean solar time at the place of observation.
$s$ the corresponding sidereal time.
$\sigma$ the sidereal time at mean noon on the meridian of the place of observation, deduced from the Nautical Almanac, page II. of each month, by Table XXVI., the reduction from which is + in west longitude, and - in east.
$a$ the acceleration for mean time, $m$, by Table XXVI.
$\alpha$ the acceleration of the fixed stars for the sidereal time, $s-\sigma$, from Table XXVII., then

$$
\begin{array}{ccccccc}
m=(s-\sigma)-\alpha & . & . & . & . & . & \text { ( } \mathrm{A}) \\
s=\sigma+m+a & . & . & . & . & . & \text { (B) } \tag{B}
\end{array}
$$

Examples.-1. At what mean solar time did $\alpha$ Aquilæ pass the meridian of Inchkeith on the 21st of August 1840?

| the sidereal time at Greenwich mean August 21. 1840, by Naut. Alm |  |  |  |
| :---: | :---: | :---: | :---: |
| Reduction for longitude $12^{\mathrm{m}} 32^{\mathrm{s}} \mathrm{W}$. |  |  | 2.06 |
| $\sigma$ at Inchkeith mean noon |  | 59 | 31.34 |
| $s$ the R. A. or Sid. T. of transit of star | 19 |  | 2.08 |
| $s-\sigma$, or difference |  | 43 | 30.74 |
| $\alpha$ to this difference (Table XXVII.) |  |  | 35.60 |
|  |  |  |  |

2. On the 14th of August 1840, on the meridian of Paris, in longitude $9^{\mathrm{m}} 21^{\mathrm{s}} .33 \mathrm{E}$., at $22^{\text {h }} 22^{\mathrm{m}} 13^{\text {e }} .4$ mean solar time, what was the sidereal time?

| $\sigma$ at Greenwich mean noon, Naut. Almanac |  |  |
| :---: | :---: | :---: |
| Reduction to $9^{\mathrm{m}} 21^{\mathrm{s}} .3 \mathrm{E}$. (Table XXVI.) |  | 1.54 |
| $\sigma$ at Paris mean noon |  | 51.87 |
| $m$ - ${ }^{\circ}$ ) | . 22 | 13.40 |
| $a$ to $22^{\text {h }} 22^{\mathrm{m}} 13^{\text {b }} .4$ (Table XXVI.) | $+$ | 40.49 |
| $s=\sigma+m+a=$ sidereal time | 7 | 45.7 |

Table XXVIII. To convert Degrees, Minutes, and Seconds of Arc on the Equator into Sidereal Time.
Example. What is the sidereal time corresponding to $56^{\circ} 38^{\prime} 40^{\prime \prime}$ ?


Table XXIX. To convert Sidereal Time into Degrees, Minutes, and Seconds of the Equator.
Example.-Required the arc of the Equator corresponding to $5^{\mathrm{h}} 48^{\mathrm{m}} 36^{\mathrm{s}} .48$ of sidereal time?


## Table XXX. Diurnal Variations.

As in the Nautical Almanac, and other Ephemerides, the places of many of the celestial bodies are given for $24^{\mathbf{h}}$ or $12^{\mathrm{h}}$, this table will serve to reduce them to any intermediate time very readily.

Exampie.-What was the sun's longitude at Edinburgh on the 21st of August 1840, at $9^{\mathrm{h}} 41^{\mathrm{m}} 35^{\mathrm{s}}$, or at $9^{\mathrm{h}} 54^{\mathrm{m}} 18^{\mathrm{s}}$ on the meridian of Greenwich ?


In those cases where there are differences given in the Nautical Almanac for one hour, ten minutes, \&c. the reductions by this table is then unnecessary, because, when the time of observation is known, the proportional parts may be obtained by multiplying the variation by the hours and parts of an hour, \&c. Thus at. Lamlash, in the Island of Arran, in longitude $20^{\mathrm{m}} 30 \mathrm{~W}$., on the 11th of August 1836, at $6^{\mathrm{h}} 21^{\mathrm{m}} 30^{\mathrm{s}}$ of Lamlash time, or adding the longitude $\left(20^{\mathrm{m}} 30^{\mathrm{s}}\right)$, because it is west, and the sum $6^{\mathrm{h}} 42^{\mathrm{m}}=6^{\mathrm{h}} .7$ is the Greenwich time, at which a series of observations on the sun were made to determine the true time and error of the chronometer. For this time then the sun's declination, equation of time, \&c. are required by the Nautical Almanac.

August 11th 1836, at Greenwich mean noon, the sun's declination is

$$
\begin{array}{ll}
\circ & 1 \\
12 & 511.8 \mathrm{~N} .
\end{array}
$$

Reduction $=-45^{\prime \prime} .02 \times 6^{\mathrm{h}} .7=-301^{\prime \prime} .6=-$.


When the latitude and declination are of the same name, the declination must be subtracted from $90^{\circ}$ to get the polar distance, but must be added to it when they are of con-
trary names. In the same way the equation of time, \&c. may be found.

Table XXXI. Sheroing the lengths of horizontal lines equivalent to the several ascending and descending planes, the length of the plane being unity; in reference to the different classes of engines, including the gross weight with engine and tender.
The first part of this table was drawn up, I believe, by Mr Barlow of Woolwich, for the Railway Commission appointed to examine the different railways submitted to Parliament, and its use has been shewn in the article on Railways immediately preceding.
In the second part are also given similar results from experiments to which I had access, and the velocities in different slopes from experiments lately made by Dr Lardner, the value of which rests on his authority.

## Table XXXII.

This table gives the content in cubic yards of any cutting for one imperial chain of 100 links, or 66 feet, or 22 yards in length, and varying in depth from 1 to 50 feet on a base or formation-level of 30 feet, with the different slopes 1 to 1 , $1 \frac{1}{2}$ to 1 , and 2 to 1 , that is, 1 horizontal to 1 perpendicular, $1_{2} \frac{1}{2}$ horizontal to 1 perpendicular, and 2 horizontal to 1 perpendicular, which include most of the slopes generally required. Thus clay, chalk, \&c. will stand on the sides of cuttings at 1 to 1 , gravel $1 \frac{1}{2}$ to 1 , sand, \&c. 2 to 1 , and the cuttings must be made accordingly. To this formation-level of 30 feet, will likewise be found half the width at the top or surface, when the cutting varies from 1 to 50 feet at the different slopes mentioned in the table. There is also added another column giving the effect of a change of 1 perpendicular foot in breadth, in order to adapt the table
to different bases either above or below 30 feet. If the base exceed 30 , the number of yards in this column, multiplied by the number of feet greater than 30 , gives a correction to be added to the content from the preceding column, but to be subtracted if less. The half-width must also be corrected by increasing or diminishing the change made on the base, in the ratio of the slopes.

If the length of the cutting differ from one chain, the number from the table must be multiplied by the number of chains considered an integer, and the links a decimal, the product will be the content in cubic yards. This table is computed on the supposition that the depth is uniform, or nearly so, in'each portion for which the calculation is made. If it varies rapidly, the portions to which it is applied must be diminished to a few links. In this mannerthe table will suit most ordinary cases likely to occur. If not, then Mr Macniell's tables must be applied, which are well adapted to all sorts of cuttings ${ }_{f}$ but are unfortunately rather expensive for common use.

Though the slopes in the table are those most commonly used, yet they may sometimes fall between or beyond them. Then to the width at the base in feet, add the horizontal length of the side of the triangle formed by the slope, multiply the sum by the depth of the cutting, and also by the length, all in feet, the product divided by 27 , will give the content in cubic yards.

It is to be remarked that the depth, multiplied by the slope, gives the side of the triangle to be added to the base, to give the mean breadth, which, multiplied by the depth, gives the area of the section, and this by the length to give the content of the cutting.

Examples-1. Let the length of a cutting be 3.75 chains, the
depth 40 feet, the base or formation-level 30 feet, with slopes $1_{\frac{1}{2}}$ to 1 , there will be found in the table 8800 cubic feet for 1 chain.

Therefore $8800 \times 3.75=33000$ cubic yards, the quantity of cutting required.
2. For a height or depth of 40 , and a base likewise of 40 feet, multiply the number under content for 1 perpendicular foot in breadth by 10 , the product will be the number of cubic yards to be added to the number for 30 in the table, to give that for 40 feet of base, thus :-

$$
8800.00+10 \times 97.77=8800.00+977.7=9777.7
$$

cubic yards for 1 chain.
This last, multiplied by the length 3.75 chains, will give

$$
9777.7 \times 3.75=36666.37 \text { cubic yards. }
$$

3. To compute the content for 1 chain in length for slopes not given in the table, suppose we have a cutting with a width of base or formation-level of 28 feet and a depth of 16 feet, the sides of which have a slope of $1 \ddagger$ to 1 , then by the directions previously given

$$
\left(16 \times 1 \frac{1}{4}+28\right) \times 16=(20+28) \times 16=768
$$

square feet, the area of the section. Then this area, multiplied by the length in feet, and the product divided by 27 , will give the content of the cutting in cubic yards. For one chain of 66 feet this will be

$$
\frac{768 \times 66}{27}=\frac{256 \times 22}{3}=1877 \frac{1}{3} \text { cubic yards. }
$$

The same process may be followed for any section long or short, which may be made to vary according to the change of the configuration of the ground.

## ASTRONOMICAL,

## GEODETICAL, AND RAILWAY

TABLES.

| Table I. Depression or Dip of the Horizon. |  |  |  | Table II. Correction of the Apparent Altitudes of the Sun and Stars. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ht. | Dip. | Ht. | Dip. | Alt. | Star. | Sun. | Alt. | Star. | Sun. | Alt. | Star. | Sun. |
| et | '" | Feet |  |  | ${ }^{\prime \prime}$ |  |  | -" |  |  | '" |  |
| 1 | 059 | 70 | 814 | 00 | 3432 | 3423 | 100 | 520 | 511 | 30 | 141 | 133 |
| 2 | 124 | 80 | 848 | 10 | 3225 | 3216 | 20 | 510 | 51 | 31 | 137 | 129 |
| 3 | 143 | 90 | 920 | 20 | 3033 | 3024 | 40 | 51 | 452 | 32 | 133 | 126 |
| 4 | 158 | 100 | 950 | 30 | 2850 | 2841 | 110 | 452 | 443 | 33 | 130 | 122 |
| 5 | 212 | 110 | 1019 | 40 | 2714 | 276 | 20 | 444 | 435 | 34 | 126 | 119 |
| 6 | 225 | 120 | 1046 | 50 | 2547 | 2538 | 40 | 436 | 427 | 35 | 123 | 116 |
| 7 | 236 | 130 | 1113 | 10 | 2427 | 2418 | 120 | 428 | 419 | 36 | 120 | 113 |
| 8 | 247 | 140 | 1139 | 10 | 2313 | 234 | 20 | 421 | 412 | 37 | 117 | 110 |
| 9 | 257 | 150 | 123 | 20 | 225 | 2156 | 40 | 414 | 45 | 38 | 115 |  |
| 10 | 37 | 160 | 1226 | 30 | 213 | 2054 | 130 | 48 | 359 | 39 | 112 |  |
| 11 | 316 | 170 | 1249 | 40 | $20 \quad 5$ | 1956 | 20 | 42 | 353 | 40 | 110 |  |
| 12 | 224 | 180 | 1312 | 50 | 1911 | 192 | 40 | 356 | 347 | 41 | 17 |  |
| 13 | 333 | 190 | 13 | 20 | 1821 | 1812 | 140 | 350 | 3 | 42 | 15 | 059 |
| 14 | 340 | 200 | 1355 | 10 | 1735 | 1726 | 20 | 345 | 336 | 43 | 13 | 056 |
| 15 | 349 | 210 | 1416 | 20 | 1652 | 1643 | 40 | 340 | 331 | 44 | 10 | 054 |
| 16 | 356 | 220 | 1436 | 30 | 1612 | 163 | 150 | 335 | 326 | 45 | 058 | 052 |
| 17 | 43 | 230 | 1455 | 40 | 1535 | 1526 | 20 | 330 | 321 | 46 | 056 | 050 |
| 18 | 410 | 240 | 1515 | 50 | 150 | 1451 | 40 | 325 | 316 | 47 | 054 | 048 |
| 19 | 417 | 25 | 15 | 30 | 14 | 14 | 16 | 321 | 312 | 48 | 053 | 046 |
| 20 | 424 | 260 | 1552 | 10 | 1356 | 1347 | 20 | 317 | 38 | 49 | 051 | 045 |
| 21 | 431 | 270 | 1610 | 20 | 1327 | 1318 | 40 | 313 | 3 | 50 | 049 | 043 |
| 22 | 437 | 280 | 1628 | 30 | 130 | 1251 | 170 | 39 | 30 | 51 | 047 | 042 |
| 23 | 443 | 290 | 1646 | 40 | 1234 | 1225 | 20 | 35 | 255 | 52 | 046 | 040 |
| 24 | 449 | 300 | 173 | 50 | 1210 | 121 | 40 | 31 | 252 | 53 | 044 | 039 |
| 25 | 455 | 310 | 17 | 40 | 1147 | 1138 | 180 | 258 | 249 | 54 | 042 | 037 |
| 26 | 51 | 320 | 1736 | 10 | 1126 | 1117 | 20 | 254 | 245 | 55 | 041 | 035 |
| 27 | 57 | 330 | 1753 | 20 | 116 | 1056 | 40 | 251 | 242 | 56 | 039 | 034 |
| 28 | 513 | 340 | 189 | 30 | 1046 | 1038 | 19 0 | 248 | 239 | 57 | 038 | 033 |
| 29 | 518 | 350 | 1825 | 40 | 1028 | 1019 | 20 | 245 | 237 | 58 | 036 | 032 |
| 30 | 523 | 360 | 1840 | 60 | 1011 | 102 | 40 | 242 | 234 | 59 | 035 | 031 |
| 31 | 529 | 37 | 1856 | 50 | 954 | 945 |  | 239 | 231 | 60 | 034 | 030 |
| 32 | 534 | 380 | 1911 | 10 | 938 | 929 | 20 | 236 | 228 | 61 | 032 | 023 |
| 33 | 539 | 390 | 1926 | 20 | 923 | 914 | 40 | 234 | 225 | 62 | 031 | 027 |
| 34 | 544 | 400 | 1941 | 30 | 99 | 90 | 210 | 231 | 222 | 63 | 030 | 026 |
| 35 | 549 | 410 | 1956 | 40 | 855 | 847 | 20 | 228 | 219 | 64 | 028 | 025 |
| 36 | 554 | 420 | 2010 | 50 | 842 | 834 | 40 | 226 | 217 | 65 | 027 | 024 |
| 37 | 559 | 430 | 2025 | 60 | 830 | 821 |  | 224 | 215 | 66 | 026 | 023 |
| 38 | 64 | 440 | 2039 | 10 | 818 | 89 | 20 | 221 | 213 | 67 | 025 | 022 |
| 39 | 69 | 450 | 2053 | 20 | 87 | 758 | 40 | 219 | 211 | 68 | 024 | 021 |
| 40 | 614 | 460 | 217 | 30 | 756 | 747 | 230 | 217 | 29 | 69 | 022 | 019 |
| 41 | 618 | 470 | 2120 | 40 | 745 | 736 | 20 | 215 | 27 | 70 | 021 | 018 |
| 42 | 623 | 480 | 2134 | 50 | 735 | 726 | 40 | 213 | 25 | 71 | 020 | 017 |
| 43 | 628 | 490 | 2147 | 70 | 725 | 717 | 24.0 | 210 | 23 | 72 | 019 | 016 |
| 44 | 632 | 500 | 220 | 10 | 716 | 77 | 20 | 28 | $2 \begin{array}{ll}2 & 1\end{array}$ | 73 | 018 | 015 |
| 45 | 636 | 510 | 2213 | 20 | 77 | 659 | 40 | 27 | 159 | 74 | 017 | 014 |
| 46 | 641 | 520 | 2226 | 30 | 659 | 650 | 250 | 25 | 157 | 75 | 016 | 013 |
| 47 | 645 | 530 | 2239 | 40 | 650 | 642 | 20 | 23 | 155 | 76 | 015 | 012 |
| 48 | 649 | 540 | 2252 | 50 | 642 | 634 | 40 | 21 | 154 | 77 | 013 | 011 |
| 49 | 653 | 550 | 235 | 80 | 635 | 626 | 260 | 159 | 152 | 78 | 012 | 010 |
| 50 | 658 | 560 | 2317 | 10 | 627 | 619 | 20 | 157 | 150 | 79 | 011 | 09 |
| 51 | 72 | 570 | 2330 | 20 | 620 | 611 | 40 | 156 | 149 | 80 | 010 | 08 |
| 52 | 76 | 580 | 2342 | 30 | 613 | 65 | 270 | 154 | 147 | 81 | 09 | 08 |
| 53 | 710 | 590 | 2354 | 40 | 67 | 558 | 20 | 153 | 145 | 82 | 08 | 07 |
| 54 | 714 | 600 | $24 \quad 6$ | 50 | 60 | 551 | 40 | 151 | 143 | 83 | 07 | 06 |
| 55 | 718 | 610 | 2418 | 90 | 554 | 545 | $28 \quad 0$ | 149 | 141 | 84 | 06 | 05 |
| 56 | 722 | 620 | 2430 | 10 | 548 | 539 | 20 | 148 | 139 | 85 | 05 | 04 |
| 57 | 726 | 630 | 2442 | 20 | 542 | 533 | 40 | 146 | 138 | 86 | 04 | 0 |
| 58 | 730 | 640 | 2454 | 30 | 536 | 528 | 290 | 145 | 136 | 87 | 03 | 0 |
| 59 60 | 734 7 7 | 650 | $\begin{array}{lll}25 & 6 \\ 25 & 17\end{array}$ | 40 | 531 505 | 522 | 20 | 144 | 135 | 88 | 02 | 02 |
| 60 | 738 | 660 | 2517 | 50 | 525 | 517 | 40 | 142 | 134 | 89 | 0 | 0 0 |

Nots 1. If the dip be increased by one-sixth of itself, the sum will be the distance of the visible horizon in geographical minutes and seconds.
2. If the dip be determined by observation, the height of the instrument above the rat wis be found.


|  | Moon's Horizontal Parallax. |  |  |  |  |  |  |  | P. P. for Alt. + |  |  |  |  |  | P. P. for Par. + |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alt | $54^{\prime}$ | $55^{\prime}$ | $56^{\prime}$ | 57' | 58 | $59^{\prime}$ | $60^{\prime}$ | $61^{\prime}$ |  | $0^{\prime}$ | $0^{\prime} \mid 2^{\prime}$ |  | $4^{\prime} 6^{\prime}$ | $6^{\prime} 8$ | $8^{\prime} 0^{\prime \prime}$ | $0^{\prime \prime} 2^{\prime \prime}$ |  | $4^{\prime \prime} 6^{\prime \prime}$ | $0^{\prime \prime}$ |
| $\left\lvert\, \begin{aligned} & 30 \\ & 31 \end{aligned}\right.$ | 4441 | $\begin{array}{cc}45 & 33 \\ 45 & 6\end{array}$ | $\begin{array}{lll}46 & 24 \\ 45 & 57\end{array}$ | 4716 | 48 47 | 48 48 | 49 50 | 50 41 | 10 | 0 30 <br> 05  <br> 25  | "120 | 428 | (128 | 2721 | 26 | 0 ${ }^{0} 2$ |  | 3 5 <br> 12 13 | 3 |
| 32 | 4348 | $4 \pm 39$ | $45 \quad 29$ | 4619 | 4710 | $48 \quad 0$ | 4850 | 4941 | 20 | 020 | 019 | 918 | 817 | 1716 | 1617 | 1719 |  | 2022 | 2 |
| 33 | 4321 | 4410 | 450 | 4550 | 4640 | $47 \quad 29$ | 4819 | $49 \quad 9$ | 30 | 015 | 514 | 413 | 312 | 1211 | 1125 | 25.27 |  | 2830 | 088 |
| 34 | 4252 | 4341 | 4430 | 4519 | 468 | 4657 | 4747 | 4836 | 40 | 010 | 0 | 98 | 87 | 7 | 34 | 3435 |  | 3738 | $8 \cdot 10$ |
| 35 | 4222 | 4310 | 4359 | 4448 | 4536 | 4625 | 4713 | $48 \quad 2$ | 50 | 0 | 5 | 3 | 32 | 2 | 42 | 4244 |  | 4547 | 748 |
| 36 | 4151 | 4239 | 4327 | 4415 | $45 \quad 3$ | 4551 | 4639 | 4727 | 0 | 036 | 635 | 53 | 4 | 3231 | 310 | 02 |  | 35 | 56 |
| 37 | 4119 | 427 | 4254 | 4341 | 4429 | 4516 | 46 | 4651 | 10 | 030 | 029 | 928 | 26 | 2625 | 258 | 89 |  | 1112 | 214 |
| 38 | 4047 | 4133 | 4220 | 437 | $43 \quad 53$ | 4440 | 4527 | $46 \quad 13$ | 20 | 024 | 423 | 22 | 20 | 2019 | 1916 | 1617 |  | 1920 | 02 |
| 39 | 4013 | 4059 | 4145 | 4231 | 4317 | 44 | 4449 | 4535 | 30 | 018 | 817 | 716 | 614 | 1413 | 13 | 23.25 |  | 2728 | 830 |
| 40 | 3939 | 4024 | 4110 | 4155 | 4240 | 4325 | 4411 | 4456 | 40 | 012 | 211 | 10 | 0 | 8 | 731 | 3133 |  | 3536 | 638 |
| 41 | 394 | 3948 | 4033 | 4118 | $42 \quad 2$ | 4247 | 4331 | 4416 | 50 | 06 | 65 | 4 | 42 | 2 | 39 | 3941 |  | 4244 | 445 |
| 42 | 3828 | 3912 | 3956 | 4040 | 4123 | 42 | 4251 | 4335 | 0 | 041 | 140 | 038 | 837 | 3735 | 350 | 0 |  | 34 | 46 |
| 43 | 3751 | 3834 | 3917 | 401 | 4044 | 4127 | 4210 | 4253 | 10 | 0 34 | 433 | 31 | 130 | 3029 | 297 | 7 |  | 1011 | 113 |
| 44 | 3713 | 3756 | 3338 | 3921 | 403 | 4046 | 4128 | 4211 | 20 | 027 | 726 | 65 | 523 | 23 | 2214 | 1416 |  | 1719 | 921 |
| 45 | 3635 | 3717 | 3759 | 3840 | 3922 | 40 | 4045 | 4127 | 30 | 020 | 019 | 18 | 816 | 1615 | 15 | 22.23 |  | 2426 | 67 |
| 46 | 3556 | 3337 | 3718 | 3759 | 3840 | 3981 | 40 | 4043 | 40 | 014 | 412 | 511 | 110 | 10 | $8{ }^{29}$ | 2930 |  | 3133 | 334 |
| 47 | 3516 | 3556 | 3636 | 3717 | 3757 | 3837 | 3917 | 3957 | 50 | 07 | 7 | 54 | 43 | 3 | 36 | 3637 |  | 3940 | 041 |
| 48 | 34 | 3515 | 3554 | 3634 | 3713 | 3752 | 3832 | 3911 | 0 | 045 | 543 | 342 | 240 | 4039 | 390 | 0 |  | 3 | 5 |
| 49 | 3354 | 3433 | 3511 | 3550 | $36 \quad 29$ | 37 | 3746 | 3824 | 10 | 037 | 736 | 634 | 43 | 3331 | 31.6 | 6 |  | 10 | 171 |
| 50 | 3312 | 3350 | 3428 | 356 | 3543 | 3321 | 3659 | 3737 | 20 | 030 | 028 | 82 | 2725 | 55 | 2413 | 13 |  | 15 | 78 |
| 51 | 3230 | 337 | 3344 | 3421 | 3458 | 3535 | 3611 | 3648 | 30 | 022 | 22 | 19 | 918 | 1816 | 1619 | 1920 |  | 2223 | 24 |
| 52 | 3147 | 3223 | 3259 | 3335 | 3411 | 3447 | $35 \quad 23$ | 3559 | 40 | 015 | 513 | 12 | 210 | 10 | 25 | 25.27 |  | 2829 | 9931 |
| 53 | 31 | 3138 | 3213 | 3248 | 3324 | 3359 | 31 34 | 3510 | 50 | 07 | 7 | 64 | 43 | 3 | 32 | 3233 |  | 3436 | 37 |
| 54 | 3018 | 3053 | 3127 | $32 \quad 2$ | 3236 | 3310 | 3345 | 3419 | 0 | 049 | 947 | 746 | 644 | 44 | 420 | 0 |  | 3 |  |
| 55 |  | 307 | 3040 | 3114 | 3147 | 3221 | 3254 | 3328 | 10 | 041 | 139 | 938 | 836 | 36 | 346 | - |  | 9 | 910 |
| 55 | 2847 | 2920 | 2953 | 3025 | 3058 | 3131 | 32 | 3235 | 20 | 033 | 331 | 29 | 29 | 2826 | 2611 | 1112 |  | 1314 | 415 |
| 57 | 28 | 2833 | 29 | 2936 | 30818 | 3040 | 3112 | 3144 | 30 | 024 | $4{ }^{23}$ | 21 | 120 | 2018 | 1817 | 1718 |  | 1920 | 20.21 |
| 58 | 2714 | 2745 | 2816 | 2847 | 2918 | 2949 | 3020 | 3051 | 40 | 016 | 615 |  | 311 | 1110 | 1022 | 2223 |  | 2425 | 25 26 |
| 59 | 2327 | 2657 | 2727 | 2757 | 2827 | 2857 | 2927 | 2957 | 50 | 08 | 8 |  |  | 32 | 28 | 2829 |  | 30.31 | 132 |
| 60 | 2539 | 268 | 2637 | $27 \quad 6$ | 2735 | $28 \quad 4$ | 2834 | 29 | 0 | 052 | 250 |  | 484 | 4745 | 450 | 01 |  | 23 | 34 |
| 61 | 2451 | 2519 | 2547 | 2615 | 2643 | 2711 | 2740 | 288 | 10 | 043 | 342 | 240 | 0038 | 3836 | 365 | 56 |  | 7 | 78 |
| 62 | $24 \quad 2$ | 2429 | 2456 | $25 \quad 23$ | 2551 | 2618 | 2645 | 2712 | 20 | 035 | 533 | 31 | 3129 | 2928 | 289 | 910 |  | 12 | 213 |
| 63 | 2312 | 2339 | 24.5 | 2431 | 2458 | 2524 | 2550 | 2616 | 30 | 026 | 624 | 422 | 221 | 2119 | 1914 | 1415 |  | 1617 | 718 |
| 64 | 2222 | 2248 | 2313 | 2339 | 24 | 2429 | 2455 | 2520 | 5 | 0 | 716 |  | 1412 | 1210 | 1018 | 1819 |  | 20.21 | 22 |
| 65 | 2132 | 2157 | 2221 | 2246 | 2310 | 2334 | 2359 | 2423 | 50 | 0 | 9 | 75 |  |  | 223 | 2324 |  | 25.26 | 27 |
| 63 | 2042 | 21.5 | 2129 | 2152 | 2215 | 2239 |  | 2326 |  | 055 | 553 |  | 5149 | 4948 | 480 | 0 |  | 2 | 23 |
| 67 | 1951 | 2013 | 2036 | 2058 | 2121 | 2143 | 225 | 2228 | 10 | 046 | 644 | 442 | 4240 | 4038 | 384 |  |  | 6 | 67 |
| 68 | $18 \quad 59$ | 1921 | 1942 | 204 | 2025 | 2047 | 218 | 2130 | 2 | 037 | 3735 | 533 | 331 | 3129 | 297 | 1 |  | 10 | 010 |
| 69 | 187 | 1828 | 1848 | 199 | 1929 | 1950 | 2010 | 2031 | 30 | 027 | 728 | 624 | 422 | 2220 | 2011 | 1112 |  | 1213 | 314 |
| 70 | 1715 | 1735 | 1754 | 1814 | 1833 | 1853 | 1912 | 1932 | 40 | 018 | 816 | 615 | 1513 | 1311 | 1115 | 1515 |  | 1617 | 717 |
| 71 | 1623 | 1641 | $17 \quad 0$ | 1718 | 1737 | 1755 | 1814 | 1832 | 50 | 09 | 9 | 75 |  | 4. | 218 | 1819 |  | 2020 | 20 |
| 72 | 1530 | 1547 | 16 | 1622 | 1640 | 1657 | 1715 | 1733 |  | 0 - 57 | 755 |  | 5351 | 5149 | 490 | 0 |  | 2 | 22 |
| 73 | 1437 | 1453 | 1510 | 1526 | 1543 | 1559 | 1616 | 1632 | 10 | $0{ }^{4} 4$ | 746 | 644 | 4442 | 4240 | 40 |  |  | 4 | 45 |
| 74 | 1343 | 1359 | 1414 | 1430 | 1445 | 15 | 1516 | 1532 | 20 | 0 | 386 | 634 | 3432 | 3230 | 305 | 5 |  | 67 | 7 |
| 75 | 1250 | 13 | 1319 | 1333 | 1348 | 14 | 1417 | 1431 | 30 | 028 | 827 | 725 | 25 | 23 | 21.8 | 89 |  | 910 | $0{ }^{10}$ |
| 7 | 1155 | $\begin{array}{ll}12 & 9\end{array}$ | 1223 | 1236 | 1250 | 13 | 1317 | 1330 | 40 | 019 | 917 | 715 | 1513 | 131 | 1111 | 1111 |  | 1212 | 213 |
| 77 | 11 | 1114 | 1126 | 1139 | 1151 | 124 | 1216 | 1229 | 50 | 09 | 9 | 86 | 64 | 4 | 13 | 1314 |  | 1415 | 515 |
| 78 | 107 | 1019 | 1030 | 1041 | 1053 | 11 | 1116 | 1127 |  | 058 | 85 | 65 | 5452 | 5250 | 50 | 0 |  | 11 | 1 |
| 79 | 912 | 923 | 933 | 944 | 954 | 105 | 1015 | 1025 | 10 | 048 | 846 | 644 | 4442 | 42 | 41 | 2 |  | 2 | 3 |
| 80 | 818 | 827 | 837 | 846 | 855 | 95 | 914 | 924 | 20 | 203 | 937 | 735 | 3533 | 33 | 31 | 3 |  | 4 | 5 |
|  | 723 <br> 6 | 7 7 61 | 740 | 748 | 756 | 8 | 813 | 821 | 30 | 029 | 927 | 725 | 55 | 23 | 215 | 5 |  | 66 | 6 |
|  | 628 | 635 | 642 | 650 | 657 |  | 712 | 719 | 40 | 019 | 917 | 715 | 1513 | 1312 | 127 | 7 |  | 78 | 8 |
| 83 | 533 | 539 | 545 | 551 | 558 |  | 610 | 617 | 50 | 010 | 08 | 86 | 64 | 4 | 8 | 89 |  | 98 | 910 |
|  |  | 443 | 448 | 453 | 458 |  |  | 514 |  | 059 | 5957 | 755 | 55 | 535 | 510 | - |  | 0 | 0 |
| 85 | 342 | 346 | 350 | 355 | 359 | 4 | 47 | 411 | 10 | 049 | 947 | 745 | 4543 | 431 | 411 | 11 |  | 1 | 1 |
| 86 | 247 | 250 | 253 | 256 | 259 | 3 | 35 | 38 | 20 | 039 | 9937 | 735 | 3533 | 331 | 31 | 1 |  | 12 | 2 |
|  | 151 | 153 | 155 | 157 | 159 | 2 | 24 | 26 | 30 | 29 | 927 | $7{ }^{26}$ | 2624 | 24 | 22 | 2 |  | 2 | 2 |
|  | 056 | 057 | 058 | 059 |  |  |  | 1 | 40 | 020 | 018 | 816 | 1614 | 1412 | 12 | 2 |  | $3{ }^{3}$ | 3 |
| 89 | 0 | 00 | 0 0 | 0 |  | 0 | 0 | 0 | 50 | 0 | 0 | 86 | 64 | 4 |  | $3{ }^{3}$ | 3 | $3{ }^{3}$ | 34 |
|  | $54^{\prime}$ | $55^{\prime}$ | 56' | 57' | 58' | 59 | $60^{\prime}$ | $61^{\prime}$ |  | $0^{\prime}$ | $0^{\prime} 2^{\prime}$ | $2^{\prime} 4^{\prime}$ | $4^{\prime} 6$ | ${ }^{\prime} 8$ | $8^{\prime} 0^{\prime \prime}$ | $0^{\prime \prime}$ |  | $4^{\prime \prime} 6^{\prime \prime}$ | $6^{\prime \prime} 8$ |


| English Barometer 30 inches. Fahrenheit's Therinometer $50^{\circ}$. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. D. | Log $\delta 8$. | $\begin{aligned} & \text { Diff. } \\ & \text { to } 1^{\prime} \end{aligned}$ | Z. D. | Log $\delta 8$. | $\begin{aligned} & \text { Diff: } \\ & \text { to } 1^{\prime} \end{aligned}$ | Z. D. | Log $\delta \theta$. | $\begin{aligned} & \text { Diff; to } \\ & 1^{\prime} \end{aligned}$ | $\frac{d \delta \theta}{d \tau}$ | $\frac{d \delta \theta}{d y}$ |
| - |  |  |  |  |  | $\bigcirc$ |  |  |  |  |
| 0 |  |  | $60 \quad 0$ | 2.00368 | 29.1 | $80 \quad 0$ | 2.50541 | 69.6 | 0.030 | 0.04 |
| 1 | 0.0085 | 50.2 | 20 | 2.00949 | 29.3 | 10 | 2.51237 | 70.7 | 0.031 | 0.04 |
| 2 | 0.3097 | 29.4 | 40 | 2.01535 | 29.5 | 20 | 2.51944 | 71.6 | 0.033 | 0.04 |
| 3 | 0.4860 | 20.8 | 610 | 2.02124 | 29.8 | 30 | 2.52660 | 72.7 | 0.034 | 0.04 |
| 4 | 0.6112 | 16.2 | 20 | 2.02718 | 30.0 | 40 | 2.53387 | 73.8 | 0.036 | 0.05 |
| 5 | 0.7086 | 13.3 | 40 | 2.03316 | 30.1 | 50 | 2.54125 | 74.9 | 0.038 | 0.05 |
| 6 | 0.7882 | 11.2 | 620 | 2.03918 | 30.4 | 810 | 2.54874 | 75.9 | 0.040 | 0.05 |
| 7 | 0.8557 | 9.8 | 20 | 2.04525 | 30.7 | 10 | 2.55635 | 77.2 | 0.042 | 0.06 |
| 8 | 0.9144 | 8.7 | 40 | 2.05137 | 30.9 | 20 | 2.56407 | 78.5 | 0.044 | 0.06 |
| 9 | 0.9863 | 7.7 | 630 | 2.05754 | 31.2 | 30 | 2.57192 | 79.7 | 0.046 | 0.07 |
| 10 | 1.0129 | 7.0 | 20 | 2.06376 | 31.5 | 40 | 2.57989 | 81.1 | 0.049 | 0.07 |
| 11 | 1.0552 | 6.4 | 40 | 2.07003 | 31.7 | 50 | 2.58800 | 82.4 | 0.051 | 0.08 |
| 12 | 1.0941 | 6.0 | 640 | 2.07635 | 32.0 | 820 | 2.59624 | 83.8 | 0.053 | 0.08 |
| 13 | 1.1300 | 5.6 | 20 | 2.08273 | 32.3 | 10 | 2.60462 | 85.1 | 0.057 | 0.09 |
| 14 | 1.1634 | 5.4 | 40 | 2.08917 | 32.6 | 20 | 2.61313 | 86.6 | 0.060 | 0.09 |
| 15 | 1.1947 | 4.9 | $65 \quad 0$ | 2.09567 | 33.0 | 30 | 2.62179 | 88.3 | 0.063 | 0.10 |
| 16 | 1.2241 | 4.6 | 20 | 2.10224 | 33.2 | 40 | 2.63062 | 89.9 | 0.067 | 0.10 |
| 17 | 1.2519 | 4.4 | 40 | 2.10886 | 33.5 | 50 | 2.63961 | 91.6 | 0.069 | 0.11 |
| 18 | 1.2784 | 4.2 | $66 \quad 0$ | 2.11555 | 33.9 | 830 | 2.64877 | 93.3 | 0.070 | 0.11 |
| 19 | 1.3036 | 4.0 | 20 | 2.12231 | 34.2 | 10 | 2.65810 | 94.8 | 0.074 | 0.12 |
| 20 | 1.3277 | 3.9 | 40 | 2.12913 | 34.5 | 20 | 2.65758 | 97.0 | 0.079 | 0.12 |
| 21 | 1.3507 | 3.7 | $67 \quad 0$ | 2.13603 | 34.9 | 30 | 2.67728 | 98.5 | 0.085 | 0.13 |
| 22 | 1.3729 | 3.6 | 20 | 2.14300 | 35.4 | 40 | 2.68713 | 100.5 | 0.089 | 0.14 |
| 23 | 1.3945 | 3.4 | 40 | 2.15006 | 35.8 | 50 | 2.69718 | 102.8 | 0.095 | 0.15 |
| 24 | 1.4151 | 3.3 | $68 \quad 0$ | 2.15719 | 36.2 | 84.0 | 2.70746 | 104.7 | 0.100 | $0.16{ }^{\text { }}$ |
| 25 | 1.4352 | 3.2 | 20 | 2.16440 | 36.6 | 10 | 2.71793 | 106.9 | 0.107 | 0.17 |
| 26 | 1.4547 | 3.2 | 40 | 2.17171 | 37.1 | 20 | 2.72862 | 109.2 | 0.114 | 0.18 |
| 27 | 1.4736 | 3.1 | 690 | 2.17910 | 37.5 | 30 | 2.73954 | 111.6 | 0.122 | 0.19 |
| 28 | 1.4921 | 3.0 | 20 | 2.18658 | 38.1 | 40 | 2.75070 | 114.0 | 0.131 | 0.20 |
| 29 | 1.5102 | 2.9 | 40 | 2.19417 | 38.5 | 50 | 2.76210 | 116.6 | 0.141 | 0.22 |
| 30 | 1.5279 | 2.8 | $70 \quad 0$ | 2.20185 | 39.0 | 850 | 2.77376 | 119.4 | 0.150 | 0.24 |
| 31 | 1.5452 | 2.8 | 20 | 2.20963 | 39.6 | 10 | 2.78570 | 121.9 | 0.161 | 0.25 |
| 32 | 1.5622 | 2.7 | 40 | 2.21752 | 40.2 | 20 | 2.79789 | 124.8 | 0.174 | 0.27 |
| 33 | 1.5790 | 2.7 | $71 \quad 0$ | 2.22552 | 40.7 | 30 | 2.81037 | 128.0 | 0.189 | 0.30 |
| 34 | 1.6954 | 2.7 | 20 | 2.23363 | 41.3 | 40 | 2.82317 | 131.1 | 0.205 | 0.33 |
| 35 | 1.6116 | 2.6 | 40 | 2.24186 | 41.9 | 50 | 2.83628 | 134.1 | 0.222 | 0.36 |
| 36 | 1.6276 | 2.6 | $72 \quad 0$ | 2.25022 | 42.5 | 860 | 2.84969 | 137.5 | 0.240 | 0.39 |
| 37 | 1.6435 | 2.6 | 20 | 2.25870 | 43.3 | 10 | 2.86344 | 141.3 | 0.260 | 0.43 |
| 38 | 1.6591 | 2.6 | 40 | 2.26732 | 44.0 | 20 | 2.87757 | 144.8 | 0.284 | 0.47 |
| 39 | 1.6746 | 2.6 | 73 0 | 2.27608 | 44.7 | 30 | 2.89205 | 148.8 | 0.310 | 0.51 |
| 40 | 1.6901 | 2.6 | 20 | 2.28498 | 45.4 | 40 | 2.90693 | 152.7 | 0.336 | 0.56 |
| 41 | 1.7055 | 2.5 | 40 | 2.29402 | 46.2 | 50 | 2.92220 | 157.0 | 0.362 | 0.61 |
| 42 | 1.7207 | 2.5 | $74 \quad 0$ | 2.30322 | 47.0 | $87 \quad 0$ | 2.93790 | 161.2 | 0.390 | 0.67 |
| 43 | 1:7358 | 2.5 | 20 | 2.31259 | 47.9 | 10 | 2.95402 | 165.8 | 0.430 | 0.75 |
| 44 | 1.7510 | 2.5 | 40 | 2.32213 | 48.8 | 20 | 2.97060 | 170.4 | 0.470 | 0.83 |
| 45 | 1.7661 | 2.5 | 750 | 2.33184 | 49.7 | 30 | 2.98764 | 175.8 | 0.520 | . 0.91 |
| 46 | 1.7812 | 2.5 | 20 | 2.34174 | 50.7 | 40 | 3.00522 | 180.8 | 0.580 | 1.01 |
| 47 | 1.7964 | 2.5 | 40 | 2.35183 | 51.7 | 50 | 3.02330 | 186.2 | 0.630 | 1.13 |
|  | 1.8116 | 2.5 | $76 \quad 0$ | 2.36212 | 52.8 | 880 | 3.04192 | 191.8 | 0.690 | 1.24 |
| 49 | 1.8268 | 2.5 | 20 | 2.37263 | 53.8 | 10 | 3.06110 | 197.7 | 0.780 | 1.41 |
| 50 | 1.8421 | 2.5 | 40 | 2.38334 | 55.1 | 20 | 3.08087 | 204.0 | 0.870 | 1.58 |
| 51 | 1.8575 | 2.6 | $77 \quad 0$ | 2.39430 | 56.3 | 30 | 3.10127 | 210.2 | 0.960 | 1.75 |
| 52 | 1.8730 | 2.6 | 20 | 2.40550 | 57.6 | 40 | 3.12229 | 216.9 | 1.070 | 2.00 |
| 53 | 1.8886 | 2.6 | 40 | 2.41695 | 58.9 | 50 | 3.14398 | 223.9 | 1.190 | 2.24 |
| 54 | 1.9044 | 2.6 | $78 \quad 0$ | 2.42867 | 60.3 | $89 \quad 0$ | 3.16637 | 231.6 | 1.320 | 2.48 |
| 55 | 1.9204 | 2.6 | 20 | 2.44066 | 61.8 | 10 | 3.18943 | 238.8 | 1.520 | 2.91 |
| 56 | 1.9365 | 2.7 | 40 | 2.45295 | 63.5 | 20 | 3.21331 | 246.1 | 1.720 | 3.34 |
| 57 | 1.9529 | 2.7 | 79 0 | 2.46556 | 65.0 | 30 | 3.23792 | 252.9 | 1.920 | 3.77 |
| 58 | 1.9696 | 2.8 | 20 | 2.47848 | 66.9 | 40 | 3.26321 | 257.3 | 2.200 | 4.34 |
| 59 | 1.9865 | 2.8 | 40 | 2.49176 | 68.8 | 50 | 3.28894 | 275.5 | 2.480 | 5.00 |
| 60 | 2.0037 | 2.9 | $80 \quad 0$ | 2.50541 | 69.6 | $90 \quad 0$ | 3.31649 |  | 2.760 | 5.70 |
|  | able contain Transactio e'er, as emp er, as em |  |  | Ivory's Ref ommonly nt. | $\begin{aligned} & \text { ions in } \\ & \text { on the } \\ & \text { in } \mathrm{Bri} \end{aligned}$ | paper opposite $i_{n}$, and | ming the B ge correet two for the | refraction etrical B | $\begin{aligned} & \text { rep prin } \\ & \text { forthe } \\ & \text { materer } \end{aligned}$ | the Phs antigrade |

GEODETICAL TABLES.

| Table VI. Barometer. |  |  | Table VII. <br> Interior Thermometer. |  |  |  | Table VIII. <br> Exterior Thermometer. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P. P. | $b$ | Log. | ¢ | Log. |  | Log. | P. P. | $t$ | Log. | P. | $t$ | Log. |
| $+$ | 27.0 | 9.95424 | 10 | 0.00173 | 50 | 0.00000 |  | 10 |  |  | 50 |  |
| 16 | 1 | 9.95585 | 11 | 0.00169 | 51 | 9.99996 | 10 | 1 | 0.03779 0.03680 | 9 | 1 | 0.00000 9.99910 |
| 32 | 2 | 9.95745 | 12 | 0.00164 | 52 | 9.99991 | 20 | 2 | 0.03582 | 18 | 2 | 9.98820 |
| 47 | 3 | 9.95904 | 13 | 0.00160 | 53 | 9.99987 | 29 | 3 | 0.03484 | 27 | 3 | 9.99730 |
| 63 | 4 | 9.96063 | 14 | 0.00156 | 54 | 9.99983 | 39 | 4 | 0.03388 | 36 | 4 | 9.95640 |
| 79 | 5 | 9.96221 | 15 | 0.00151 | 55 | 9.99978 | 49 | 5 | 0.03288 | 45 | 5 | 999550 |
| . 95 | 6 | 9.96379 | 16 | 0.00147 | 56 | 9.99974 | 59 | 6 | 0.03191 | 54 | 6 | 9.99460 |
| 111 | 7 | 9.96536 | 17 | 0.00143 | 57 | 9.99970 | 69 | 7 | 0.03094 | 63 | 7 | 9.99371 |
| 126 | 8 | 9.96692 | 18 | 0.00138 | 58 | 9.99965 | 78 | 8 | 0.02997 | 72 | 8 | 9.99282 |
| 142 | 9 | 9.96848 | 19 | 0.00134 | 59 | 9.99961 | 88 | 9 | 0.02900 | 81 | 9 | 9.99193 |
|  | 28.0 | 9.97004 | 20 | 0.00130 | 60 | 9.99957 |  | 20 | 0.02803 |  | 60 | 9.99104 |
| 15 | -1 | 9.97158 | 21 | 0.00126 | 61 | 9.99953 | 10 | 1 | 0.02706 | 9 | 1 | 9.99016 |
| 30 | 2 | 9.97313 | 22 | 0.00121 | 62 | 9.99948 | 19 | 2 | 0.02809 | 18 | 2 | 9.98927 |
| 46 | 3 | 9.97466 | 23 | 0.00117 | 63 | 9.99944 | 29 | 3 | 0.02514 | 26 | 3 | 9.98839 |
| 61 | 4 | 9.97620 | 24 | 0.00113 | 64 | 9.99940 | 38 | 4 | 0.02418 | 35 | 4 | 9.98751 |
| 76 | 5 | 9.97772 | 25 | 0.00108 | 65 | 9.99935 | 48 | 5 | 0.02323 | 44 | 5 | 9.98663 |
| 91 | 6 | 9.97924 | 26 | 0.00104 | 66 | 9.99931 | 58 | 6 | 0.02227 | 53 | 6 | 9.98575 |
| 106 | 7 | 9.98076 | 27 | 0.00100 | 67 | 9.99927 | 67 | 7 | 0.02132 | 62 | 7 | 9.98488 |
| 122 | 8 | 9.98227 | 28 | 0.00095 | 68 | 9-99922 | 77 | 8 | 0.02037 | 70 | 8 | 9.98401 |
| 137 | 9 | 9.98378 | 29 | 0.00091 | 69 | 9.99918 | 86 | 9 | 0.01942 | 79 | 9 | 9.98314 |
|  | 29.0 | 9.98528 | 30 | 0.00087 | 70 | 9.99913 |  | 30 | 0.01848 |  | 70 | 9.98227 |
| 15 | 1 | 9.98677 | 31 | 0.00083 | 71 | 9.99909 | 9 | 1 | 0.01754 | 9 | 1 | 9.98140 |
| 29 | 2 | 9.98826 | 32 | 0.00078 | 72 | 9.98904 | 19 | 2 | 0.01660 | 17 | 2 | 9.98054 |
| 44 | 3 | 9.98975 | 33 | 0.00074 | 73 | 9.99900 | 28 | 3 | 0.01566 | 26 | 3 | 9.97967 |
| 69 | 4 | 9.99123 | 34 | 0.00070 | 74 | 9.99896 | 38 | 4 | 0.01472 | 34 | 4 | 9.97881 |
| 88 | 6 | 9.99270 9.99417 | 35 | 0.00065 0.00061 | 75 | 9.99891 9.99887 | 47 56 | 5 | 0.01379 0.01285 | 43 | 5 | 95 |
| 103 | 7 | 9.99563 | 37 | 0.00057 | 77 | 9.99883 | 66 | 7 | 0.01192 | 60 | 7 | 9.97623 |
| 118 | 8 | 9.99709 | 38 | 0.00052 | 78 | 9.99878 | 75 | 8 | 0.01099 | 69 | 8 | 9.97537 |
| 132 | 9 | 9.98855 | 39 | 0.00048 | 79 | 9.99874 | 85 | 9 | 0.01006 | 77 | 9 | 9.97452 |
|  | 30.0 | 0.00000 | 40 | 0.00043 | 80 | 9.99870 |  | 40 | 0.00914 |  | 80 | 9.97367 |
| 14 | 1 | 0.00145 | 41 | 0.00039 | 81 | 9.99866 | 9 | 1 | 0.00822 | 8 | 1 | 9.97282 |
| 29 | 2 | 0.00289 | 42 | 0.00034 | 82 | 9.99861 | 18 | 2. | 0.00730 | 17 |  | 9.97197 |
| 43 | 3 | 0.00432 | 43 | 0.00030 | 83 | 9.99857 | 28 | 3. | 0.00638 | 25 |  | 9.97112 |
| 57 | 4 | 0.00575 | 44 | 0.00026 | 84 | 9.99853 | 37 | 4 | 0.00546 | 34 | 4 | 9.97027 |
| 71 | 5 | 0.00718 | 45 | 0.00021 | 85 | 9.99848 | 46 | 5 | 0.00455 | 42 | 5 | 9.96943 |
| 86 | 6 | 0.00860 | 46 | 0.00017 | 86 | 9.99844 | 55 | 6 | 0.00363 | 50 | 6 | 9.96859 |
| 100 | 7 | 0.01002 | 47 | 0.00013 | 87 | 9.99840 | 64 | 7 | 0.00272 | 59 | 7 | 9.96775 |
| 114 | 8 | 0.01143 | 48 | 0.00008 | 88 | 9.99835 | 74 | 8 | 0.00181 | 67 | 8 | 9.96691 |
| 129 | 9 | 0.01284 | 49 | 0.00004 | 89 | 9.99831 | 83 | 9 | 0.00090 | 76 | 9 | 9.96607 |
|  | 31.0 | 0.01424 | 50 | 0.00000 | 90 | 9.99827 |  | 50 | 0.00000 |  | 90 | 9.96524 |
| 'Table IX. Metrical Barometer. |  |  |  |  |  | Table X.Centigrade Thermometer. |  |  |  |  |  |  |
| $b$ |  | Log. | $b$ |  |  | $t$ |  | Log. |  | $t$ |  | Log. |
| ${ }^{\text {ma. }} 730$. |  | 98137 | 75 | 9.9 |  | 10 |  | 0.03542 |  | 10 |  | 0.00000 |
| 731 |  | 9.98196 | 751 | 9.993 |  | 9 |  | 0.03358 |  | 11 |  | 9.99829 |
| 732 |  | 9.98256 | 752 | 9.99 |  | 8 |  | 0.03175 |  | 12 |  | 9.99659 |
| 733 |  | 9.98315 | 753 | 9.99 |  | 7 |  | 0.02994 |  | 13 |  | 9.99491 |
| 734 |  | 9.98374 | 754 | 9.99 |  | 6 |  | 0.02812 |  | 14 |  | 9.99322 |
| 735 |  | 9.98433 | 755 | 9.995 |  | 5 |  | 0.02631 |  | 15 |  | 9.99154 |
| 738 |  | 9.98492 | 756 | 9.996 |  | 4 |  | 0.02451 |  | 16 |  | 9.98987 |
| 737 |  | 9.98551 | 757 | 9.99 |  | 8 |  | 0.02272 |  | 17 |  | 9.98820 |
| 738 |  | 9.98610 | 758 | 9.997 |  | 2 |  | 0.02094 |  | 18 |  | 9.98654 |
| 739 |  | 9.98669 | 759 | 9.99 |  | 1 |  | 0.01915 |  | 19 |  | 9.98488 |
| 740 |  | 9.98728 | 760 |  |  | 0 |  | 0.01738 |  | 20 |  | .98323 |
| 741 |  | 9.98786 | 761 | 9.999 |  | $+1$ |  | 0.01563 |  | 21 |  | 9.98158 |
| 742 |  | 9.98845 | 762 | 0.000 |  | 2 |  | 0.01385 |  | 22 |  | 9.97994 |
| 743 |  | 9.98903 | 763 | 0.000 |  | 3 |  | 0.01210 |  | 23 |  | 9.97832 |
| 744 |  | 9.98962 | 764 | 0.00 |  | 4 |  | 0.01035 |  | 24 |  | 9.97669 |
| 745 |  | 9.99020 | 765 | 0.001 |  | 5 |  | 0.00861 |  | 25 |  | 9.97506 |
| 746 |  | 9.99078 | 766 | 0.002 |  | 6 |  | 0.00687 |  | 26 |  | 9.97344 |
| 747 |  | 9.99137 | 767 | 0.002 |  | 7 |  | 0.00515 |  | 27 |  | 9.97183 |
| 748 |  | 9.99195 | 768 | 0.003 |  | 8 |  | 0.00343 |  | 28 |  | 9.97023 |
| 749 |  | 9.99253 | 789 | 0.003 |  | 9 |  | 0.00171 |  | 29 |  | 9.96863 |
| P. P. + | $\frac{1}{6}$ | $\begin{array}{lll} \hline 2 & 3 & 4 \\ 12 & 17 & 23 \end{array}$ | $\begin{aligned} & 5 \\ & 29 \end{aligned}$ | $\begin{array}{cc} 6 & 7 \\ 35 & 41 \end{array}$ | $\begin{array}{ll} 3 & 9 \\ 652 \end{array}$ | P.P. |  | $\begin{array}{lll} 123 \\ 174 \\ \hline \end{array}$ | $\begin{array}{ll} 3 & 4 \\ 51 & 68 \end{array}$ | $\begin{gathered} 6 \\ 102 \end{gathered}$ |  | $\begin{array}{cc} 8 & 9 \\ 136 & 153 \end{array}$ |


| Fahr | English Barometer, b. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | $24 \mathrm{in}$. | 25 in. | 26 in. | 27 in. | 28 in. | 29 in. | 80 in. | , |
| $\stackrel{\circ}{30}$ | 7.45244 | 7.45249 | 7.45253 | 7.45258 | 7.45263 | 7.45267 | 7.45272 | $+_{5}$ |
| 31 | 7.45239 | 7.45244 | 7.45248 | 7.45253 | 7.45258 | 7.45262 | 7.45267 | 5 |
| 32 | 7.45233 | 7.45238 | 7.45243 | 7.45248 | 7.45253 | 7.45258 | 7.45263 | 5 |
| 33 | 7.45227 | 7.45232 | 7.45238 | 7.45243 | 7.45248 | 7.45253 | 7.45259 | 5 |
| 34 | 7.45221 | 7.45226 | 7.45232 | 7.45237 | 7.45243 | 7.45248 | 7.45254 | 6 |
| 35 | 7.45215 | 7.45221 | 7.45226 | 7.45232 | 7.45238 | 7.45243 | 7.45249 | 6 |
| 36 | 7.45209 | 7.45215 | 7.45221 | 7.45226 | 7.45232 | 7.45238 | 7.45244 | 6 |
| 37 | 7.45202 | 7.45208 | 7.45214 | 7.452:0 | 7.45226 | 7.45232 | 7.45238 |  |
| 38 | 7.45195 | 7.45201 | 7.45208 | 7.45214 | 7.45220 | 7.45226 | 7.45233 | 6 |
| 39 | 7.45188 | 7.45194 | 7.45201 | 7.45207 | 7.45214 | 7.45220 | 7.45227 | 7 |
| 40 | 7.45181 | 7.45188 | 7.45194 | 7.45201 | 7.45208 | 7.45214 | 7.45221 | 7 |
| 41 | 7.45173 | 7.45180 | 7.45187 | 7.45194 | 7.45201 | 745208 | 7.45215 | 7 |
| 42 | 7.45165 | 7.45172 | 7.45180 | 7.45187 | 7.45194 | 7.45201 | 7.45209 | 7. |
| 43 | 7.45157 | 7.45164 | 7.45172 | 7.45179 | 7.45187 | 7.45194 | 7.45202 | 7 |
| 44 | 7.45148 | 7.45156 | 7.45164 | 7.45171 | 7.45179 | 7.45187 | 7.45195 | 8 |
| 45 | 7.45140 | 7.45148 | 7.45156 | 7.45164 | 7.45172 | 7.45180 | 7.45188 | 8. |
| 46 | 7.45131 | 7.45139 | 7.45148 | 7.45156 | 7.45164 | 7.45172 | 7.45181 | 8 |
| 47 | 7.45121 | 7.45130 | 7.45139 | 7.45147 | 7.45156 | 7.45165 | 7.45174 | 9 |
| 48 | 7.45111 | 7.45120 | 7.45129 | 7.45139 | 7.45148 | 7.45157 | 7.45166 | 9 |
| 49 | 7.45101 | 7.45110 | 7.45120 | 7.45129 | 7.45138 | 7.45148 | 7.45158 | 9 |
| 50 | 7.45091 | 7.45101 | 7.45111 | 7.45120 | 7.45130 | 7.45140 | 7.45150 | 10 |
| 51 | 7.45080 | 7.45090 | 7.45100 | 7.45110 | 7.45121 | 7.45131 | 7.45141 | 10 |
| 52 | 7.45069 | 7.45079 | 7.45090 | 7.45100 | 7.45111 | 7.45121 | 7.45132 | 10 |
| 53 | 7.45058 | 7.45069 | 7.45080 | 7.45090 | 7.45101 | 7.45112 | 7.45123 | 11 |
| 54 | 7.45046 | 7.45057 | 7.45068 | 7.45080 | 7.45091 | 7.45102 | 7.45113 | 11 |
| 55 | 7.45034 | 7.45046 | 7.45057 | 7.45069 | 7.45081 | 7.45092 | 7.45104 | 12 |
| 56 | 7.45021 | 7.45033 | 7.45045 | 7.45058 | 7.45070 | 7.45082 | 7.45094 | 12 |
| 57 | 7.45008 | 7.45021 | 7.45033 | 7.45046 | 7.45059 | 7.45071 | 7.45084 | 13 |
| 58 | 7.44994 | 7.45007 | 7.45020 | 7.45034 | 7.45047 | 7.45060 | 7.45073 | 13 |
| 59 | 7.44981 | 7.44994 | 7.45008 | 7.45021 | 7.45035 | 7.45048 | 7.45062 | 14 |
| 60 | 7.44967 | 7.44981 | 7.44995 | 7.45009 | 7.45023 | 7.45037 | 7.45051 | 14 |
| 61 | 7.44952 | 7.44966 | 7.44981 | 7.44995 | 7.45010 | 7.45024 | 7.45039 | 15 |
| 62 | 7.44937 | 7.44952 | 7.44967 | 7.44982 | 7.44997 | 7.45012 | 7.45027 | 15 |
| 63 | 7.44921 | 7.44936 | 7.44852 | 7.44967 | 7.44983 | 7.44998 | 7.45014 | 16 |
| 64 | 7.44905 | 7.44921 | 7.44937 | 7.44953 | 7.44969 | 744985 | 7.45001 | 16 |
| 65 | 7.44889 | 7.44905 | 7.44822 | 7.44938 | 7.44955 | 7.44971 | 7.44988 | 17 |
| 66 | 7.44872 | 7.44889 | 7.44906 | 7.44922 | 7.44939 | 7.44956 | 7.44973 | 17 |
| 67 | 7.44854 | 7.44871 | 7.44889 | 7.44906 | 7.44923 | 7.44941 | 7.44958 | 17 |
| 68 | 7.44835 | 7.44853 | 7.44871 | 7.44890 | 7.44908 | 7.44926 | 7.44944 | 18 |
| 69 | 7.44817 | 7.44836 | 7.44855 | 7.44873 | 7.44892 | 7.44911 | 7.44930 | 18 |
| 70 | 7.44798 | 7.44817 | 7.44837 | 7.44856 | 7.44876 | 7.44895 | 7.44915 | 19 |
| 71 | 7.44778 | 7.44798 | 7.44818 | 7.44839 | 7.44859 | 7.44879 | 7.44899 | 20 |
| 72 | 7.44757 | 7.44778 | 7.44799 | 7.44820 | 7.44841 | 7.44862 | 7.44883 | 21 |
| 73 | 7.44735 | 7.44757 | 7.44779 | 7.44800 | 7.44822 | 7.44844 | 7.44866 | 22 |
| 74 | 7.44713 | 7.44735 | 7.44758 | 7.44780 | 7.44803 | 7.44825 | 7.44848 | 23 |
| 75 | 7.44691 | 7.44714 | 7.44737 | 7.44761 | 7.44784 | 7.44807 | 7.44830 | 24 |
| 76 | 7.44668 | 7.44692 | 7.44716 | 7.44740 | 7.44763 | 7.44787 | 7.44811 | 24 |
| 77 | 7.44644 | 7.44669 | 7.44693 | 7.44718 | 7.44742 | 7.44767 | 7.44792 | 25 |
| 78 | 7.44619 | 7.44645 | 7.44670 | 7.44695 | 7.44721 | 7.44746 | 7.44772 | 26 |
| 79 | 7.44593 | 744619 | 7.44646 | 7.44672 | 7.44698 | 7.44724 | 7.44751 | 26 |
| 80 | 7.44567 | 7.44594 | 7.44622 | 7.44649 | 7.44676 | 7.44704 | 7.44731 | 27 |
| 81 | 7.44542 | 7.44570 | 7.44598 | 7.44626 | 7.44654 | 7.44682 | 7.44710 | 28 |
| 82 | 7.44515 | 7.44544 | 7.44573 | 7.44601 | 7.44630 | 7.44659 | 7.44688 | 29 |
| 83 | 7.44486 | 7.44516 | 7.44546 | 7.44575 | 7.44605 | 7.44635 | 7.44665 | 30 |
| 84 | 7.44455 | 7.44486 | 7.44517 | 7.44549 | 7.44580 | 7.44611 | 7.44642 | 31 |
| 85 | 7.44424 | 7.44456 | 7.44489 | 7.44521 | 7.44553 | 7.44586 | 7.44618 | 32 |
| 86 | 7.44393 | 7.44426 | 7.44460 | 7.44493 | 7.44526 | 7.44560 | 7.44593 | 33 |
| 87 | 7.44361 | 7.44395 | 7.44430 | 7.44464 | 7.44498 | 7.44533 | 7.44567 | 34 |
| 88 | 7.44328 | 7.44363 | 7.44399 | 7.44434 | 7.44470 | 7.44506 | 7.44541 | 35 |
| 89 | 7.44294 | 7.44831 | 7.44367 | 7.44404 | 7.44441 | 7.44477 | 7.44514 | 36 |
| 90 | 7.44258 | 7.44296 | 7.44334 | 7.44372 | 7.44410 | 7.44448 | 7.44486 | 38 |
| 30 | - 6 | - 6 | $-5$ | - 5 | - 5 | -5 | - 5 | 30 |
| 40 | -8 | -88 | - 7 | - 7 | - 7 | 6 | 6 | 40 |
| 50 | 10 | 10 | 10 | 9 | 9 | 8 | 8 | 50 |
| 60 | 14 | 14 | 14 | 14 | 13 | 12 | 11 | 60 |
| 70 | 19 | 19 | 18 | 18 | 17 | 16 | 15 | 70 |
| 80 | 26 | 26 | 24 | 23 | 22 | 21 | 20 | 80 |
| 90 | 35 | 35 | 33 | 32 | 30 | 29 | 28 | 90 |

GEODETICAL TABLES.

| Table XII. Parallax of the Sun in Altitude or Z.D. |  |  |  |  |  |  |  | Table XIII. Parallax of the Planets in Altitude or Zenith-Distance. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pb | Mar. |  |  |  |  |  |  |  |  |  | rizo | P |  |  |  |  |  |  |
|  | Jan. | Dec. | Nov | ${ }^{\mathrm{Oc}}$ | $\begin{gathered} \text { Sept. } \\ 1 \end{gathered}$ | $\begin{aligned} & \text { Aug. } \\ & . \end{aligned}$ | $\begin{gathered} \text { ruly } \\ 1 \end{gathered}$ | $10^{\prime \prime}$ | 20 | 30 |  | $2^{\prime}$ |  | 4 |  |  | 7" |  |  |  |
|  | " |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 8.8 | 8.7 | 8.7 | 8.6 | 8.5 | 8.5 | 8.5 | 10.0 | 20.0 | 30.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 90 |
| 3 | 8.7 | 8.7 | 8.7 |  | 8.5 | 8.5 | 8.4 | 10.0 | 20.0 | 30.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 |  |
|  | 8.7 | 8.7 | 8.6 | 8.5 | 8.5 | 8.4 | 8.4 | 9.9 | 19.9 | 29.8 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 84 |
|  | 8. | 8.6 | 8.6 | 8.5 | 8.4 | 8.4 | 8 | 9.9 | 19.8 | 29.6 | 1.0 | 2.0 | 3.0 | 4.0 | 4.9 | 5.9 | 6.9 | 7.9 | 8.9 |  |
| 12 | 8.5 | 8.5 | 8.5 | 8.4 | 8.3 | 8.3 | 8.3 | 9.8 | 19.6 | ${ }_{29}^{29.3}$ | 1.0 | 2.0 | 2.9 | 3.9 | 4.9 | 5.9 | 6.8 | 7.8 | 8.8 | 78 |
| 15 | 8. | 8.4 | 8.4 | 8.3 | 8.2 | 8.2 | 8.2 | 9.7 | 19.3 | 29.0 | 1.0 | 1.9 | 2.9 | 3.9 | 4.8 | 5.8 | 6.8 | 7.7 | 8.7 | 75 |
| 18 | 8.3 | 8.3 | 8.2 | 8.2 | 8.1 | 8.1 | 8.0 | 9.5 | 19.0 | 28.5 | 1.0 | 1.9 | 2.9 | 3.8 | 4.8 | 5.7 | 6.7 | . 6 | 8.6 |  |
| 21 | 8.2 | 8.2 | 8.1 | 8.0 | 8.0 | 7.9 | 7.9 | 91 | 18.7 | ${ }^{28.0}$ | 0.9 | 1.9 | 2.8 | 3.7 | 4.7 | 5.6 | 6.5 | 7.5 | 8. | 69 |
| 24 | 8. | 8.8 | 7.9 | 7.8 | 7.8 | 7.7 | 7.7 | 9.1 | 18.3 | ${ }^{27.4}$ | $0.9$ | 1.8 | ${ }_{27}^{2.7}$ | ${ }_{36}^{3.7}$ | 4.6 | 5.5 | 6.4 | 7.3 | 8.2 | 66 |
| $\begin{aligned} & 27 \\ & 30 \end{aligned}$ | 7. | $\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$ | 7.7 | 7.7 | $7.4$ | ${ }_{7.5}^{7.5}$ | $\begin{aligned} & 7.5 \\ & 7.3 \end{aligned}$ | 88.9 | 17.3 | ${ }_{26.0}^{26.7}$ | $\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$ | 1.7 | ${ }_{2.6}^{2.7}$ | $\begin{aligned} & 3.6 \\ & 3.5 \end{aligned}$ | 4.5 | 5.3 5.2 | 6.2 6.1 | 7.1 6.9 | 7.8 | 63 |
| 33 | 7.3 | 7.3 | 7.3 | 7.2 | 7.1 | 7.1 | 7.1 | 8.4 | 16. | 25.2 | 0.8 | 1.7 | 2.5 | 3.4 | 4.2 | 5.0 | 5.9 | 6.7 | 7.5 | 57 |
|  | 7.1 | 7.1 | 7.0 | 7.0 | 6.9 | 6.9 | 6.8 | 8.1 | 16.2 | 24.3 | 0.8 | 1.6 | 2.4 | 3.2 | 4.0 | 4.9 | 5.7 | 6.5 | 7.3 | 54 |
| $39$ | 6. | 6.8 | 6. | 67 | 6.6 | 6.6 | 6.6 | 7.8 | 15.5 | 23.3 | 0.8 | 1.6 | 2.3 | 3.1 |  | 4.7 | 5.4 | 6.2 |  |  |
| 42 | 6.5 | 6. | 6. | ${ }_{6}^{6.4}$ | 6.3 | 6.3 | ${ }_{6}^{6.3}$ | 7.4 | 14.9 | 2 | 0.7 | 1.5 | 2.2 | 3.0 |  | . 5 | 5.2 | 5.9 | 6.7 | 48 |
| $\begin{aligned} & 45 \\ & 48 \end{aligned}$ | $15 .$ | 5. | 5.8 | 6.1 5.7 | 6.7 5 | ${ }_{5}^{6.0}$ | 6.7 5 | 6.7 | 13.4 | 20.1 | 0.7 | 1.3 | 2.0 | 2.7 | 3.3 | ${ }_{4.0}^{4.2}$ | 4.7 | 5.4 |  | 45 |
| ${ }_{51}^{48}$ | 5.5 | 5.5 | 5.5 | 5.4 | 5.4 | 5.3 | 5.3 | 6.3 | 12.6 | 18.9 | 0.6 | 1.3 | 1.9 | 2.5 | 3.1 | 3.8 | 4.4 | 5.0 | 5.7 |  |
| 5 | 5.1 | 5.1 | 5.1 | 5.0 | 5.0 | 5.0 | 5.0 | 5.9 | 11.8 | 17.6 | 0.6 | 1.2 | 1.8 | 2.4 | 2.9 | 3.5 | 4.1 | 4.7 | 5.3 | 36 |
| 57 | 4.8 | 4.7 | 4.7 | 4.7 | 4.6 | 4.6 | 4.6 | 5.4 | 10.9 | 16.3 | 0.5 | 10 | 1.6 | 2.2 | 2.7 | 3.3 | 3.8 | 4 4 | 4.9 |  |
| 60 | 4.4 | ${ }_{40}^{4.4}$ | ${ }_{39}^{4.3}$ | 14.3 | $\begin{aligned} & 4.2 \\ & 3.9 \end{aligned}$ | $\left\|\begin{array}{l} 4.2 \\ 3.8 \end{array}\right\|$ | $\begin{aligned} & 4.2 \\ & 3.8 \end{aligned}$ | 4.0 | 10.0 | ${ }_{13.6}^{15.0}$ |  |  | $\begin{aligned} & 1.5 \\ & 1.4 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$ |  |  | ${ }_{3}^{3.5}$ |  | 4.5 | 30 |
| $\begin{aligned} & 63 \\ & 66 \end{aligned}$ | 4.0 | $\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$ | ${ }_{3.5}^{3.9}$ | $3.9$ | $\left\|\begin{array}{l} 3.8 \\ 3.4 \end{array}\right\|$ | $\begin{aligned} & 3.8 \\ & 3.4 \end{aligned}$ | 4.5 | 8.1 | ${ }_{12.2}^{13.6}$ | 0.5 | 0.9 0.8 | 1.4 | 1.6 | ${ }_{2.0}^{2.3}$ | ${ }_{2.4}^{2.7}$ | 3.2 | 3.6 3.2 | 4.1 |  |
| 69 | 3.1 | 3.1 | ${ }_{3.1}^{3.5}$ | 3.1 | 3.1. | 3.0 | 3.0 | 3.6 | 7.2 | 10.8 | 0.4 | 0.7 | 1.1 | 1.4 | 1.8 | 2.2 | 2.5 | 2.9 | 3.2 |  |
| 7 | 2.7 |  |  |  | 2.6 | 2.6 |  |  |  |  |  |  |  |  |  |  |  | 2.5 |  | 18 |
| 75 | 2.3 | 2.3 | 2.2 | 2.2 | 18 | 2.2 | 2.2 | ${ }_{21}^{2.6}$ | 5.2 | 7.8 | 0.3 | 0.5 | 0.8 | 1.0 | 1.3 | 1.6 | 1.8 | 2.1 | 2.3 | 18 |
| 78 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 2.1 | 4.2 | 6.2 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 | 1.7 | 1.9 | 12 |
| 81 | 1. | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.3 | 1.6 | 3.1 | 4.7 |  | 0.3 | ${ }_{03}^{0.5}$ |  |  | 0.9 | 1.1 | 1.3 | 1. | 9 |
| 87 | 0.5 | ${ }_{0} 0.5$ | 0.9 | ${ }_{0}^{0.4}$ | 0.4 | ${ }_{0} 0.4$ | 0.4 | 1.5 | 1.0 | 1.6 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0. 4 | 0.4 | 0.5 | $\stackrel{6}{3}$ |
| 90 | 0.0 | 0.0 | 0.0 | . | 0.0 | 0.0 | . | 0.0 | 0.0 | 1. | 0 | 0. | 0.2 | 0.0 | 0.0 | . | 0.0 | . | 0.0 | 0 |

Table XIV. Augmentation of the Moon's Table XV. Reduction of the Moon's TableXVI semidiameter in Altitude or Z. D. +

Parallax in the Spheroid -
Reduction of the Lat.


[^13]| Table XVIL. |  |  |  |  |  |  | educti | t | he | ri | $n$ | Te | -4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time from the Meridian. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 0 m. |  | 1 m. |  | 2 m |  | 8 m. |  | 4 m . |  | 6 m. |  | 6 m |  | 7 In |  |
|  | V | 4 | V | $v$ | V | v | V | $v$ | V | $v$ | $\nabla$ | $v$ | $V$ | V | $\nabla$ | $\bullet$ |
| 0 | 0 | 0 | 96 | 0 | 381 | 1 | 857 | 7 | 1623 | 23 | 2390 | 67 | 8427 | 117 | 4684 | 278 |
| 1 | 0 | 0 | 98 | 0 | 387 | 1 | 866 | 7 | 1536 | 24 | 2306 | 67 | 3446 | 118 | 4886 | 2203 |
| 2 | 0 | 0 | 101 | 0 | 384 | 1 | 876 | 8 | 1548 | 24 | 2412 | 58 | 8466 | 180 | 4708 | 20 |
| 3 | 0 | 0 | 105 | 0 | 400 | 1 | 885 | 8 | 1561 | 24 | 2428 | 59 | 3484 | 121 | 4731 | 221 |
| 4 | 0 | 0 | 108 | 0 | 407 | 1 | 895 | 8 | 1574 | 25 | 2444 | 60 | 3503 | 183 | 4753 | 228 |
| 5 | 0 | 0 | 111 | 0 | 413 | 1 | 805 | 8 | 1587 | 25 | 2460 | 61 | 3522 | 194 | 4775 | 228 |
| 6 | 1 | 0 | 115 | 0 | 420 | 2 | 915 | 8 | 1600 | 26 | 2476 | 61 | 3542 | 125 | 4798 | 230 |
| 7 | 1 | 0 | 118 | 0 | 426 | 2 | 925 | 9 | 1613 | 26 | 2492 | 62 | 3561 | 127 | 4820 | 238 |
| 8 | 2 | 0 | 122 | 0 | 433 | 2 | 935 | 9 | 1626 | 26 | 2508 | 63 | 3581 | 128 | 4843 | 235 |
| 9 | 2 | 0 | 126 | 0 | 440 | 2 | 945 | 9 | 1639 | 27 | 2524 | 64 | 3600 | 180 | 4866 | 237 |
| 10 | 3 | 0 | 130 | 0 | 447 | 2 | 955 | 9 | 1632 | 27 | 2541 | 63 | 3620 | 111 | \% | \% |
| 11 | 3 | 0 | 133 | 0 | 454 | 2 | 965 | 9 | 1666 | 28 | 2557 | 65 | 3639 | 182 | 4911 | 241 |
| 12 | 4 | 0 | 137 | 0 | 461 | 2 | 975 | 10 | 1679 | 28 | 2574 | 66 | 3659 | 183 | 4934 | 218 |
| 13 | 5 | 0 | 141 | 0 | 468 | 2 | 985 | 10 | 1692 | 29 | 2590 | 67 | 3679 | 185 | 4967 | 246 |
| 14 | 6 | 0 | 145 | 0 | 475 | 2 | 995 | 10 | 1706 | 29 | 2607 | 68 | 3698 | 187 | 4980 | 248 |
| 15 | 6 | 0 | 149 | 0 | 482 | 2 | 1006 | 10 | 1719 | 30 | 2623 | 69 | 3718 | 188 | 5003 | 250 |
| 16 | 7 | 0 | 153 | 0 | 489 | 3 | 1016 | 10 | 1733 | 30 | 2640 | 70 | 3738 | 140 | 5026 | 258 |
| 17 | 8 | 0 | 157 | 0 | 496 | 8 | 1026 | 11 | 1746 | 50 | 2657 | 71 | 3758 | 141 | 5049 | 255 |
| 18 | 9 | 0 | 161 | 0 | 503 | 3 | 1037 | 11 | 1760 | 31 | 2674 | 71 | 3778 | 143 | 5072 | 267 |
| 19 | 10 | 0 | 165 | 0 | 510 | 3 | 1047 | 11 | 1773 | 31 | 2691 | 72 | 3798 | 144 | 5096 | 260 |
| 20 | 11 | 0 | 169 | 0 | 518 | 3 | 1058 | 11 | 1787 | 32 | 2708 | 73 | 3818 | $\overline{146}$ | 5119 |  |
| 21 | 12 | 0 | 174 | 0 | 525 | 3 | 1068 | 12 | 1801 | 32 | 2725 | 74 | 3888 | 147 | 5142 |  |
| 22 | 13 | 0 | 178 | 0 | 533 | 3 | 1079 | 12 | 1815 | 33 | 2742 | 75 | 3858 | 149 | 5165 | 267 |
| 23 | 14 | 0 | 183 | 0 | 540 | 3 | 1089 | 12 | 1829 | 33 | 2759 | 76 | 3879 | 150 | 5189 | 269 |
| 24 | 15 | 0 | 187 | 0 | 548 | 3 | 1100 | 12 | 1843 | 34 | 2776 | 77 | 3899 | 152 | 5212 | 278 |
| 25 | 16 | 0 | 192 | 0 | 556 | 3 | 1111 | 12 | 1857 | 34 | 2793 | 78 | 3919 | 154 | 5236 | 274 |
| 26 | 18 | 0 | 196 | 0 | 563 | 4 | 1122 | 13 | 1871 | 35 | 2810 | 79 | 3939 | 155 | 5259 | 277 |
| 27 | 19 | 0 | 201 | 0 | 671 | 4 | 1133 | 13 | 1885 | 35 | 2827 | 80 | 3960 | 157 | 5283 | 279 |
| 28 | 21 | 0 | 205 | 0 | 579 | 4 | 1144 | 13 | 1899 | 36 | 2844 | 81 | 3980 | 158 | 5307 | 282 |
| 29 | 22 | 0 | 210 | 0 | 587 | 4 | 1155 | 13 | 1913 | 36 | 2861 | 82 | 4000 | 160 | 5331 | 284 |
| 30 | 24 | 0 | 214 | 0 | 595 | 4 | 1166 | 14 | 1927 | 37 | 2879 | 83 | 4021 | 169 | 5354 | 287 |
| 31 | 25 | 0 | 219 | 0 | 603 | 4 | 1177 | 14 | 1942 | 38 | 2896 | 84 | 4042 | 168 | 5378 | 289 |
| 32 | 27 | 0 | 224 | 0 | 611 | 4 | 1188 | 14 | 1956 | 38 | 2914 | 85 | 4063 | 165 | 5402 | 291 |
| 33 | 29 | 0 | 229 | 0 | 619 | 4 | 1200 | 14 | 1970 | 39 | 2982 | 86 | 4084 | 167 | 5426 | 294 |
| 34 | 31 | 0 | 224 | 0 | 627 | 4 | 1211 | 15 | 1985 | 39 | 2949 | 87 | 4104 | 168 | 5450 | 297 |
| 35 | 32 | 0 | 229 | 0 | 635 | 4 | 1222 | 15 | 1999 | 40 | 2967 | 88 | 4125 | 170 | 5474 | 300 |
| 36 | 34 | 0 | 244 | 0 | 643 | 5 | 1234 | 15 | 2014 | 40 | 2985 | 89 | 4146 | 172 | 5498 | 302 |
| 37 | 38 | 0 | 249 | 0 | 651 | 5 | 1245 | 16 | 2028 | 41 | 3003 | 90 | 4167 | 174 | 5522 | 305 |
| 38 | 38 | 0 | 254 | 0 | 660 | 5 | 1257 | 16 | 2043 | 42 | 3021 | 91 | 4188 | 175 | 5546 | 308 |
| 39 | 40 | 0 | 259 | 0 | 668 | 5 | 1268 | 16 | 2058 | 42 | 3039 | 92 | 4209 | 177 | 5571 | 310 |
| 40 | 42 | 0 | 264 | 1 | 677 | 5 | 1280 | $\underline{16}$ | 2073 | 43 | 3057 | 93 | 4230 | 179 | 5595 | 313 |
| 41 | 44 | 0 | 269 | 1 | 685 | 5 | 1292 | 17 | 2088 | 44 | 8075 | 94 | 4251 | 181 | 5619 | 316 |
| 42 | 46 | 0 | 275 | 1 | 694 | 5 | 1303 | 17 | 2103 | 44 | 3093 | 96 | 4273 | 183 | 5643 | 318 |
| 43 | 49. | 0 | 280 | 1 | 703 | 5 | 1315 | 17 | 2118 | 45 | 3111 | 97 | 4294 | 184 | 5668 | 321 |
| 44 | $51^{\circ}$ | 0 | 286 | 1 | 711 | 5 | 1327 | 18 | 2133 | 45 | 3129 | 98 | 4316 | 186 | 5692 | 324 |
| 45 | 53 | 0 | 291 | 1 | 719 | 5 | 1339 | 18 | 2148 | 46 | 3147 | 99 | 4337 | 188 | 5717 | 327 |
| 46 | 56 | 0 | 297 | 1 | 728 | 6 | 1351 | 18 | 2163 | 47 | 3165 | 100 | 4358 | 190 | 5741 | 330 |
| 47 | 58 | 0 | 302 | 1 | 737 | 6 | 1363 | 19 | 2178 | 47 | 3184 | 101 | 4380 | 192 | 5766 | 338 |
| 48 | 61 | 0 | 308 | 1 | 746 | 6 | 1375 | 19 | 2193 | 48 | 3202 | 108 | 4401 | 194 | 5791 | 335 |
| 49 | 64 | 0 | 314 | 1 | 755 | 6 | 1387 | 19 | 2208 | 48 | 3220 | 104 | 4423 | 196 | 5816 | 338 |
| 50 | 67 | 0 | 320 | 1 | 764 | 6 | 1399 | 20 | 2224 | 49 | 3235 | 105 | 4444 | 197 | 5840 | 341 |
| 51 | 69 | 0 | 326 | 1 | 773 | 6 | 1411 | 20 | 2239 | 50 | 3257 | 106 | 4466 | 199 | 5865 | 344 |
| 52 | 72 | 0 | 332 | 1 | 782 | 6 | 1423 | 20 | 2255 | 51 | 3276 | 107 | 4488 | 201 | 5890 | 347 |
| 53 | 75 | 0 | 338 | 1 | 791 | 6 | 1435 | 21 | 2270 | 52 | 3295 | 109 | 4510 | 203 | 5915 | 350 |
| 54 | 78 | 0 | 344 | 1 | 800 | 6 | 1448 | 21 | 2286 | 52 | 3313 | 110 | 4532 | 205 | 5940 | 358 |
| 55 | 80 | 0 | 350 | 1 | 810 | 6 | 1460 | 21 | 2301 | 53 | 3332 | 111 | 4554 | 207 | 5966 | 356 |
| 56 | $83$ | 0 | 356 | 1 | 819 | 7 | 1473 | 22 | 2317 | 54 | 3351 | 112 | 4576 | 209 | 5991 | 359 |
| $\begin{aligned} & 57 \\ & 58 \end{aligned}$ | 86 | 0 | 362 | 1 | -828 | 7 | 1485 | 22 | 2333 | 54 | 3370 | 114 | 4598 | 211 | 6016 | 362 |
| $\begin{aligned} & 58 \\ & 80 \end{aligned}$ | 89 | 0 | 369 | 1 | 838 | 7 | 1498 | 22 | 2348 | 55 | 3389 | 115 | 4620 | 213 | 6041 | 365 |
| 59 | 92 | 0 | 375 | 1 | 847 | 7 | 1510 | 23 | 2364 | 56 | 3408 | 116 | 4642 | 215 | 6067 | 368 |
| 0.1 | 0 |  | 0 |  | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | 8 |  |
| 0.2 | 0 |  | 1 |  | 2 |  | 2 |  | 3 |  | 4 |  | 4 |  | 8 |  |
| 0.3 | 1 |  | 1 |  | 2 |  | 3 |  | 4 |  | 5 |  | 6 |  | 7 |  |
| 0.4 | 1 |  | 2 |  | 3 |  | 4 |  | 6 |  | 7 |  | 8 |  | 10 |  |
| 0.5 | $1$ |  | $2$ |  | $4$ |  | $5$ |  | 7 |  | 9 |  | 10 |  | 19 |  |
| $\begin{gathered} 0.6 \\ 07 \end{gathered}$ | $1$ |  | $\begin{aligned} & 3 \\ & 3 \end{aligned}$ |  | $5$ |  | $7$ |  | 8 |  | 11 |  | 13 |  | 14 |  |
| 0.7 0.8 | 1 |  | 3 |  | 6 |  | 8 |  | 10 |  | 13 |  | 15 |  | 17 |  |
| 0.8 0.9 | 1 |  | 4 |  | 6 |  | 9 |  | 11 |  | 14 |  | 17 |  | 19 |  |
|  | 2 |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |

GEODETICAL TABLES.

| Time from the Meridian. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 8 m. |  | 9 m. |  | 10 m . |  | 11 m. |  | 12 m. |  | 13 m. |  |
|  | V | $v$ | V | $v$ | V |  | V |  | V |  | V |  |
| 0 | 6092 | 371 | 7710 | 594 | 9518 | 906 | 11616 | 1326 | 13705 | 1878 | 16083 | 2587 |
| 1 | 6117 | 374 | 7738 | 599 | 9550 | 912 | 11551 | 1334 | 13743 | 1889 | 16124 | 2600 |
| 2 | 6143 | 377 | 7767 | 603 | 9581 | 918 | 11588 | 1342 | 13781 | 1899 | 16166 | 2613 |
| 3 | 6168 | 380 | 7795 | 608 | 9613 | 924 | 11621 | 1350 | 13819 | 1910 | 16207 | 2627 |
| 4 | 6194 | 384 | 7824 | 612 | P615 | 930 | 11656 | 1359 | 13857 | 1920 | 16249 | 2640 |
| 5 | 6219 | 387 | 7853 | 617 | 0677 | 936 | 11691 | 1367 | 13895 | 1931 | 16290 | 2654 |
| 6 | 6245 | 390 | 7882 | 621 | 9709 | 942 | 11726 | 1375 | 13934 | 1942 | 16332 | 2667 |
| 8 | 6270 | 393 | 7911 | 626 | 9741 | 949 | 11762 | 1383 | 13972 | 1953 | 16373 | 2681 |
| 8 | 6296 6322 | 398 400 | 7940 7969 | 630 | 9773 9805 | 955 | 11797 | 1392 | 14011 | 1963 | 16415 | 2695 |
| 10 | 6348 | 403 | 7998 | 640 | 9837 | 968 | 11868 | 1408 | 14088 | 1984 | 16498 | 28 |
| 11 | 6374 | 406 | 8027 | 644 | 9870 | 974 | 11903 | 1417 | 14126 | 1995 | 16540 | 2736 |
| 12 | 6400 | 410 | 8056 | 649 | 9902 | 980 | 11939 | 1425 | 14165 | 2006 | 16582 | 2750 |
| 13 | 6426 | 413 | 8085 | 654 | 9934 | 987 | 11974 | 1434 | 14204 | 2017 | 16624 | 2764 |
| 14 | 6452 | 416 | 8114 | 658 | 9967 | 993 | 12010 | 1442 | 14242 | 2028 | 16666 | 2778 |
| 15 | 6179 | 420 | 8144 | 663 | 9999 | 1000 | 12045 | 1451 | 14281 | 2039 | $167{ }^{\text {c }}$ | 2792 |
| 16 | 6505 | 423 | 8173 | 668 | 10032 | 1006 | 12081 | 1460 | 14320 | 2051 | 16750 | 2806 |
| 17 | 6531 | 427 | 8202 | 673 | 10065 | 1013 | 12117 | 1468 | 14359 | 2062 | 16792 | 2820 |
| 18 | 6557 | 430 | 8232 | 678 | 10097 | 1020 | 12153 | 1477 | 14398 | 2073 | 16834 | 2834 |
| 19 | 6584 | 433 | 8261 | 682 | 10130 | 1026 | 12189 | 1486 | 14437 | 2084 | 16876 | 2848 |
| 20 | 6610 | 437 | 8291 | 687 | 10163 | 1033 | 12225 | 1495 | 14476 | 2095 | 16918 | 2862 |
| 21 | 6636 | 440 | 8321 | 692 | 10196 | 1039 | 12261 | 1503 | 14515 | 2107 | 16960 | 2876 |
| $\stackrel{21}{23}$ | 6663 | 444 | 8350 | 697 | 10228 | 1046 | 12297 | 1512 | 14554 | 2118 | 17003 | 2891 |
| 24 | 6716 | 451 | 88880 | 702 | 10261 | 1053 | 12333 | ' 1521 | 14594 | 2130 | 17045 | 2905 |
| 25 | 6743 | 455 | 8440 | 712 | 10327 | 1060 | 12369 | 1530 | 14672 | 2141 | 17088 17130 | 20 |
| 26 | 9769 | 458 | 8470 | 717 | 10360 | 1073 | 12441 | 1548 | 14712 | 2164 | 17173 | 2949 |
| 27 | 6796 | 462 | 8500 | 722 | 10394 | 1080 | 12478 | 1557 | 14751 | 2176 | 17215 | 2964 |
| 28 | 6823 | 468 | 8530 | 728 | 10427 | 1087 | 12514 | 1566 | 14791 | 2187 | 17258 | 2978 |
| 29 | 6850 | 469 | 8560 | 733 | 10460 | 1094 | 12550 | 1575 | 14831 | 2199 | 17301 | 2993 |
| 30 | 6877 | 473 | 8590 | 738 | 10493 | 1101 | 12587 | 1584 | 14870 | 2211 | 17344 | 3008 |
| 31 | 6904 | 477 | 8620 | 743 | 10527 | 1108 | 12623 | 1593 | 14910 | 2223 | 17387 | 3023 |
| 32 | 6931 | 480 | 8650 | 748 | 10560 | 1115 | 12660 | 1603 | 14950 | 2235 | 17430 | 3038 |
| 33 | 6958 | 484 | 8680 | 753 | 10593 | 1122 | 12696 | 1612 | 14990 | 2247 | 17473 | 3053 |
| 34 | 6085 | 488 | 8711 | 758 | 10627 | 1129 | 12733 | 1621 | 15029 | 2259 | 17516 | 3068 |
| 35 | 7013 | 492 | 8741 | 764 | 10660 | 1136 | 12769 | 1630 | 15069 | 2271 | 17559 | 3083 |
| 36 | 7040 | 496 | 8772 | 769 | 10694 | 1144 | 12806 | 1640 | 15109 | 2283 | 17602 | 3098 |
| 37 | 7067 | 499 | 8802 | 775 | 10728 | 1151 | 12843 | 1649 | 15149 | 2295 | 17645 | 3113 |
| 38 39 | 7094 | 503 | 8833 | 780 | 10761 | 1158 | 12880 | 1659 | 15189 | 2307 | 17688 | 31-29 |
| 39 | 7122 | 507 | 8863 | 786 | 10795 | 1165 | 12917 | 1668 | 15229 | 2319 | 17732 | 3144 |
| 40 | 7149 | 511 | 8894 | 791 | 10829 | 1172 | 12954 | 1678 | 15269 | 2331 | Lo |  |
| 42 | 7204 | 519 | 8955 | 802 | 10897 | 1187 | 13028 | 1687 | 15349 | 23456 |  | + |
| 43 | 7232 | 523 | 8986 | 807 | 10931 | 1195 | 13065 | 1707 | 15390 | 2369 | No. | gs. |
| 44 | 7260 | 527 | 9017 | 813 | 10965 | 1203 | 13102 | 1717 | 15430 | 2381 | 11 |  |
| 45 | 7288 | 531 | 9048 | 819 | 10999 | 1210 | 13139 | 1726 | 15470 | 2393 | 2 | 13205 |
| 46 | 7315 | 535 | 9079 | 824 | 11033 | 1217 | 13177 | 1736 | 15511 | 2406 |  | $\overline{13395}$ |
| 47 | 7343 | 539 | 9110 | 830 | 11067 | 1225 | 13214 | 1746 | 15551 | 2418 |  | $12365$ |
| 48 | 7371 | 543 | 9141 | 836 | 11101 | 1232 | 13252 | 1756 | 15592 | 2431 |  | $36274$ |
| 49 | 7399 | 547 | 9172 | 841 | 11135 | 1240 | 13289 | 1766 | 15633 | 2444 |  | 11335 |
| 50 | 7427 | 552 | 9203 | 847 | 11170 | 1248 | 13327 | 1776 | 15673 | 2456 |  |  |
| 51 | 7455 | 556 | 9235 | 853 | 11204 | 1255 | 13364 | 1786 | 15714 | 2469 | 12 7.2 <br> 14 7.1 | $\begin{array}{r} 35244 \\ 68297 \end{array}$ |
| 52 | 7483 | 560 | 9266 | 859 | 11239 | 1263 | 13402 | 1796 | 15755 | 2482 | 16 7.11 | $\begin{aligned} & 68297 \\ & 10305 \end{aligned}$ |
| 53 54 | 7511 | 564 | 9297 | 864 | 11273 | 1271 | 13440 | 1806 | 15796 | 2495 | 187 | 59152 |
| 55 | 7568 | 568 | 9328 9360 | 870 | 11308 | 1279 | 13477 | 1816 | 15837 | 2508 | ${ }_{20} 7$ | 13395 |
| 56 | 7596 | 577 | 9391 | 882 | 11377 | 1294 | 13553 | 1837 | 15919 | 2534 |  |  |
| 57 | 7624 | 581 | 9423 | 888 | 11412 | 1302 | 13591 | 1847 | 15960 | 2547 | $\begin{array}{ll} \mathrm{Log} \\ \text { fo } \end{array}$ |  |
| 58 | 7653 | 586 | 9454 | 894 | 11446 | 1310 | 13629 | 1857 | 16001 | 2560 |  |  |
| 59 | 7681 | 590 | 9486 | 900 | 11481 | 1318 | 13667 | 1861 | 16042 | 2573 | 1 | 13395 |
| ${ }_{0}^{8}$ |  | 0 |  | 0 | 3 | 1 |  |  |  |  | 2  <br> 4 5.7 | $\begin{aligned} & \overline{122365} \\ & 111336 \end{aligned}$ |
| 0.2 | 5 | 1 | 6 |  | 7 |  | 7 | 2 | -8 | 2 | 65. | 33244 |
| 0.3 | 8 | 1 | 9 | 1 | 10 | 2 | 11 | 3 | 12 | 4 | 8 5.11 | 10305 |
| 0.4 | 11 | 2 | 12 | 2 | 13 | 3 | 15 | 4 | 16 | 5 | 10 5.0 | 13395 |
| 0.5 | 13 | 2 | 15 | 2 | 16 | 3 | 18 | 4 | 20 | 6 | 12 4. | 34214 |
| 0.6 | 16 | 2 | 18 | 3 | 20 | 4 | 22 | 5 | 24 | 8 | 14.4 .8 | 67267 |
| 0.7 | 19 | 8 | 21 | 3 | 23 | 5 | 26 | 6 | 28 | 8 | 16 | 09275 |
| 0.8 | 22 | 3 | 24 |  | 26 | 6 | 29 | 7 | 32 | 10 | 184.7 | 58122 |
| 0.9 | 24 | 4 | 27 | 4 | 29 | 6 | 33 | 8 | 36 | 11 | $20 \mid 4.7$ | 12365 |

Table XVIII. To compute the Equation to Equal Altitudes and Equal Azimuths.

| E. T. | Log $A$. | Log $B$ | Log $C$ | E. T. | $\log A$ | Log B | Log $C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| h. m. | +9.4109 | +9.3958 | 0.5870 | $\begin{gathered} \text { h. } \\ 13 \\ 0 \end{gathered}$ | +9.6405 | -8.7562 | 0.8166 |
| 10 | 4117 | 3940 | 5879 | 10 | 6474 | 8.8296 | 8235 |
| 20 | 4127 | 3921 | 5888 | 20 | 6544 | 8.8941 | 8306 |
| 30 | 4137 | 3900 | 5898 | 30 | 6616 | 8.9518 | 8378 |
| 40 | 4148 . | 3877 | 5909 | 40 | 6689 | 9.0043 | 8451 |
| 50 | 4159 | 3853 | 5920 | 50 | 6764 | 9.0524 | 8525 |
| 30 | +9.4171 | +9.38:7 | 0.5933 | 140 | +9.6840 | $-9.0970$ | 0.8601 |
| 10 | 4184 | 3800 | 5945 | 10 | 6918 | 1387 | 8679 |
| 20 | 4198 | 3770 | 5959 | 20 | 6998 | 1779 | 8759 |
| 30 | 4212 | 3739 | 5973 | 30 | 7079 | 2150 | 8840 |
| 40 | 4227 | 3706 | 5988 | 40 | 7162 | 2502 | 8923 |
| 50 | 4243 | 3671 | 6004 | 50 | 7247 | 2839 | 9008 |
| 40 | +9.4259 | +9.3635 | 0.6021 | 150 | +9.7333 | -9.3162 | 0.9094 |
| 16 | 4.776 | 3596 | 6038 | 10 | 7422 | 3472 | 9182 |
| 20 | 4294 | 3555 | 6056 | 20 | 7512 | 3771 | 9273 |
| 30 | 4313 | 3512 | 6074 | 30 | 7604 | 4061 | 9366 |
| 40 | 4333 | 3466 | 6094 | 40 | 7699 | 4343 | 9460 |
| 50 | 4353 | $3+16$ | 6114 | 50 | 7795 | 4617 | 9557 |
| 50 | +9.4374 | +9.3368 | 0.6135 | 16 | +9.7894 | -9.4884 | 0.9656 |
| 10 | 4396 | 3316 | 6155 | 10 | 7995 | 5145 | 9757 |
| 20 | 4418 | 3260 | 6179 | 20 | 8099 | 5401 | 9860 |
| 30 | 4441 | 3202 | 6202 | 30 | 8205 | 5652 | 0.9966 |
| 40 | 4465 | 3141 | 6226 | 40 | 8313 | 5899 | 1.0075 |
| 50 | 4490 | 3077 | 6251 | 50 | 8424 | 6142 | 1.0186 |
| 60 | +9.4515 | +9.3010 | 0.6276 | 170 | +9.8538 | -9.6382 | 1.0300 |
| 10 | 4541 | 2939 | 6303 | 10 | 8655 | 6620 | 0416 |
| 20 | 4568 | 2865 | 6330 | 20 | 8775 | 6855 | 0536 |
| 30 | 4596 | 2787 | 6358 | 30 | 8898 | 7089 | 0659 |
| 40 | 4625 | 2703 | 6386 | 40 | 9024 | 7320 | 0785 |
| 50 | 4654 | 2620 | 6416 | 50 | 9153 | 7551 | 0915 |
| 70 | +9.4685 | +9.2529 | 0.6446 | 180 | +9.9286 | -9.7781 | 1.1048 |
| 10 | 4716 | 2434 | 6477 | 10 | 9423 | 8011 | 1184 |
| 20 | 4748 | 2334 | 6509 | 20 | 9564 | 8240 | 1325 |
| 30 | 4781 | 2228 | 6542 | 30 | 9709 | 8470 | 1470 |
| 40 | 4814 | 2116 | 6575 | 40 | 9.9858 | 8701 | 1620 |
| 50 | 4849 | 1998 | 6610 | 50 | 0.0012 | 8933 | 1774 |
| 80 | +9.4884 | +9.1874 | 0.6645 | 190 | +0.0171 | -9.9166 | 1.1933 |
| 10 | 4920 | 1742 | 6682 | 10 | 0336 | 9401 | 2097 |
| 20 | 4957 | 1601 | 6719 | 20 | 0506 | 9639 | 2267 |
| 30 | 4995 | 1452 | 6757 | 30 | 0681 | -9.9880 | 2443 |
| 40 | 5034 | 1294 | 6795 | 40 | 0864 | -0.0124 | 2605 |
| 50 | 5074 | 1124 | 6834 | 50 | 1053 | -0.0372 | 2814 |
| 90 | +9.5114 | +9.0943 | 0.6876 | 20 | +0.1249 | -0.0624 | 1.3010 |
| 10 | 5156 | 0749 | 6918 | 10 | 1453 | 0882 | 3215 |
| 20 | 5199 | 0540 | 6960 | 20 | 1666 | 1146 | 3428 |
| 30 | 5242 | 0313 | 7004 | 30 | 1889 | 1416 | 3650 |
| 40 | 5287 | 9.0068 | 7048 | 40 | 2122 | 1694 | 3883 |
| 50 | 5332 | 8.9801 | 7094 | 50 | 2366 | 1981 | 4127 |
|  | $+9.5379$ | +8.9509 | 0.7140 | 21.0 | +0.2622 | -0.2278 | 1.4383 |
| 10 20 | 5426 | 9186 | 7188 | 10 | 2893 | 2587 | 4654 |
| 20 30 | 5475 | $88 \div 8$ | 7236 | 20 | 3178 | 2908 | 4940 |
| 30 | 5525 | 8427 | 7286 | 30 | 3482 | 3245 | 5243 |
| 40 50 | 5575 | 7972 | 7336 | 40 | 3805 | 3600 | 5566 |
| 50 | 5627 | 7449 | 7388 | 50 | 4151 | 3974 | 5912 |
| 11.0 | +9.5680 | +8.6837 | 0.7441 | 220 | +0.4523 | -0.4372 | 1.6284 |
| 10 | 5734 | 6102 | 7495 | 10 | 4925 | 4799 | 6687 |
| 20 | 5789 | 5191 | 7550 | 20 | 5365 | 5260 | 7125 |
| 30 | 5845 | 4001 | 7606 | 30 | 5848 | 5764 | 7609 |
| 40 50 | 5902 | 8.2299 | 7663 | 40 | 6386 | 6319 | 8147 |
| 50 | 5960 | +7.9348 | 7722 | 50 | 6992 | 6941 | 8753 |
| 120 | +9.6020 |  | 0.7782 | 230 | +0.7689 | -0.7651 | 1.9450 |
| 10 | 6081 | $-7.9469$ | 7842 | 10 | 0.8508 | 8482 | 2.0269 |
| 20 | 6143 | 8.2540 | 7905 | 20 | 0.9505 | 9489 | 1267 |
| 30 | 6207 | 4363 | 7968 | 30 | 1.0783 | -1.0774 | 2544 |
| 20 50 | 6272 | 5675 | 8033 | 40 | 1.2573 | 1.2569 | 4334 |
| 50 | 6338 | 6707 | 8099 | 50 | 1.5613 | 1.5612 | 7374 |

GEODETICAL TABLES.

| Lat. | $\mathbf{L o g} \mathbf{M}$. |  | Azimath from the Meridian, or $Z, \log 0$. |  |  |  |  |  |  |  | Log P . |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 0^{\circ} \\ \mathbf{8 6 0} \end{gathered}$ | Diff. | $\begin{array}{r} 10^{\circ} \\ 350^{\circ} \\ \hline \end{array}$ | $\begin{array}{r} 20^{\circ} \\ 340^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 80^{\circ} \\ & 330^{\circ} \end{aligned}$ | $\begin{array}{r} 40^{\circ} \\ 320^{\circ} \\ \hline \end{array}$ | $\begin{gathered} 50^{\circ} \\ 310^{\circ} \\ \hline \end{gathered}$ | $\begin{aligned} & 60^{\circ} \\ & 300^{\circ} \\ & \hline \end{aligned}$ | $\begin{array}{r} 70^{\circ} \\ 290^{\circ} \end{array}$ | $\begin{array}{r} 80^{\circ} \\ 280^{\circ} \end{array}$ | $\begin{array}{r} 90^{\circ} \\ 270^{\circ} \\ \hline \end{array}$ | D. |
| $\bigcirc$ | 7.9967088 | 13 | 66216 | 63706 | 59856 | 55129 | 50092 | 45353 | 41488 | 38965 | 38086 |  |
| 1 | 67075 | 40 | 66203 | 63693 | 59844 | 55120 | 50085 | 45347 | 41481 | 38960 | 38081 | 13 |
| 2 | 67035 | 66 | 66166 | 63656 | 59812 | 55091 | 50059 | 45327 | 41466 | 38945 | 38068 | 22 |
| 3 | 66969 | 93 | 66101 | 63595 | 59755 | 55042 | 50020 | 45295 | 41438 | 38922 | 38046 | 31 |
| 4 | 66876 | 118 | 66008 | 63510 | 59679 | 54974 | 49963 | 45248 | 41402 | 38889 | 38015 | 39 |
| 5 | 66758 | 144 | 65893 | 63400 | 59579 | 54889 | 49892 | 45185 | 41353 | 38848 | 37976 | 48 |
| 6 | 66614 | 170 | 65753 | 63268 | 59460 | 54789 | 49803 | 45117 | 41293 | 38796 | 37928 | 57 |
| 7 | 66444 | 196 | 65585 | 63111 | 59318 | 54662 | 49700 | 45031 | 41223 | 38736 | 37871 | 65 |
| 8 | 66248 | 221 | ${ }_{6}^{65394}$ | 62930 | 59156 | 54519 | 49581 | 44934 | 41143 | 38667 | 37806 | 74 |
| 9 | 66027 | 244 | 65177 | 62727 | 58970 | 54359 | 49445 | 44821 | 41051 | 38588 | 37732 | 81 |
| 10 | 7.996578 | 270 | 64938 | 62502 | 58767 | 54182 | 49296 | 44701 | 40960 | 38503 | 37651 | 0 |
| 11 | 65513 | 297 | 64675 | 62251 | 58541 | 53985 | 49133 | 44564 | 40839 | 38407 | 37561 | 99 |
| 12 | 65216 | 321 | 64382 | 61978 | 58294 | 53770 | 48952 | 44416 | 40718 | 38303 | 37462 | 107 |
| 13 | 64895 | 345 | 64068 | 61682 | 58026 | 53539 | 48756 | 44255 | 40586 | 38188 | 37355 | 115 |
| 14 | 64550 | 368 | 63730 | 61363 | 57738 | 53286 | 48545 | 44083 | 40444 | 38066 | 37240 | 122 |
| 15 | 64182 | 391 | 63369 | 61024 | 57432 | 53021 | 48321 | 43900 | 40293 | 37937 | 37118 | 130 |
| 16 | 63791 | 411 | 62985 | 60663 | 57105 | 52736 | 48082 | 43704 | 40131 | 37800 | 36988 | 138 |
| 17 | 63380 | 432 | 62582 | 60283 | 56762 | 52438 | 47832 | 43498 | 39961 | 37653 | 36850 | 144 |
| 18 | 62948 | 456 | 62160 | 59886 | 56402 | 52125 | 47568 | 43282 | 39784 | 37501 | 36706 | 2 |
| 19 | 62492 | 479 | 61714 | 59465 | 56022 | 51793 | 47290 | 43053 | 39596 | 37339 | 36554 | 0 |
| 20 | 7.9962013 | 497 | 61244 | 59024 | 55622 | 51447 | 46998 | 42811 | 39399 | 37168 | 36394 | 166 |
| 21 | 61516 | 514 | 60758 | 58566 | 55207 | 51086 | 46694 | 42562 | 39194 | 36993 | 36228 | 172 |
| 22 | 61002 | 535 | 60254 | 58090 | 54778 | 50712 | 46381 | 42304 | 38980 | 36810 | 36056 | 178 |
| 23 | 60467 | 555 | 59728 | 57597 | 54334 | 50325 | 46053 | 42038 | 38761 | 36622 | 35878 | 184 |
| 24 | 59912 | 573 | 59184 | 57086 | 53871 | 49923 | 45717 | 41761 | 38534 | 36420 | $3569 \pm$ | 191 |
| 25 | 59339 | 589 | 58623 | 56556 | 53391 | 49505 | 45371 | 41474 | 38298 | 36226 | 35503 | 196 |
| 26 | 58750 | 605 | 58046 | 56014 | 52901 | 49080 | 45009 | 41180 | 38055 | 36016 | 35307 | 202 |
| 27 | 58145 | 621 | 57453 | 55457 | 52396 | 48640 | 44639 | 40876 | 37806 | 35802 | 35105 | 207 |
| 28 | 57524 | 636 | 56843 | 54882 | 51878 | 48190 | 44261 | 40565 | 37550 | 35584 | 34898 | 212 |
| 29 | 56888 | 650 | 56221 | 54297 | 51348 | 47727 | 43874 | 40246 | 37288 | 35358 | 34686 | 217 |
| 30 | 7.9956238 | 662 | 55584 | 53653 | 50819 | 47257 | 43478 | 39920 | 37008 | 35128 | 34469 | 21 |
| 31 | 55576 | 674 | 54935 | 53089 | 50253 | 46775 | 43074 | 39589 | 36748 | 34893 | 34248 | 225 |
| 32 | 54902 | 687 | 54274 | 52465 | 49691 | 46288 | 42662 | 39253 | 36470 | 34655 | 34023 | 228 |
| 33 | 54215 | 698 | 53601 | 51831 | 49119 | 45793 | 42244 | 38907 | 36189 | 34412 | 33795 | 233 |
| 34 | 53517 | 711 | 52917 | 51183 | 48536 | 45283 | 41819 | 38559 | 35909 | 34167 | 33562 | 237 |
| 35 | 52806 | 717 | 52220 | 50532 | 47943 | 44768 | 41385 | 38202 | 35606 | 33915 | 33325 | 239 |
| 36 | 52089 | 724 | 51518 | 49869 | 47346 | 44248 | 40949 | 37844 | 35313 | 33661 | 33086 | 241 |
| 37 | 51365 | 732 | 50809 | 49202 | 46742 | 43723 | 40508 | 37482 | 35015 | 33405 | 32845 | 244 |
| 38 | 50633 | 740 | 50090 | 48527 | 46132 | 43193 | 40060 | 37116 | 31715 | 33147 | 32601 | 247 |
| 39 | 49893 | 744 | 49365 | 47845 | 45515 | 42655 | 39610 | 36745 | 34409 | 32884 | 32354 | 248 |
| 40 | 7.9949149 | 749 | 48637 | 47146 | 44893 | 42115 | 39156 | 36372 | 34099 | 32652 | 32106 | 250 |
| 41 | 48400 | 754 | 47902 | 46468 | 44269 | 41572 | 38700 | 35997 | 33793 | 32357 | 31856 | 251 |
| 42 | 47646 | 757 | 47164 | 45772 | 43640 | 41026 | 38241 | 35620 | 33484 | 32090 | 31605 | 252 |
| 43 | 46889 | 756 | 46422 | 45074 | 43009 | 40477 | 37779 | 35242 | 33173 | 31823. | 31353 | 253 |
| 44 | 46133 | 761 | 45681 | 44377 | 42378 | 39928 | 37319 | 34862 | 32862 | 31556 | 31100 | 253 |
| 45 | 45372 | 757 | 44934 | 43676 | 41744 | 39377 | 36856 | 34483 | 32547 | 31287 | 30847 | 252 |
| 46 | 44615 | 759 | 44193 | 42977 | 41114 | 38828 | 36394 | 34102 | 32236 | 31019 | 30595 | 253 |
| 47 | 43856 | 758 | 43449 | 42276 | 40483 | 38278 | 35931 | 33723 | 31925 | 30750 | 30342 | 253 |
| 48 | 43098 | 754 | 42707 | 41578 | 39849 | 37727 | 35468 | 33344 | 31612 | 30483 | 30089 | 251 |
| 49 | 42344 | 748 | 41968 | 40883 | 39221 | 37181 | 35011 | 32967 | 31302 | 30217 | . 29838 | 250 |
| 50 | 7.9941596 | 746 | 41232 | 40192 | 38596 | 36639 | 34555 | 32593 | 30995 | 29952 | 29588 | 248 |
| 51 | 40850 | 742 | 40503 | 39505 | 37975 | 36100 | 34101 | 32220 | 30687 | 29688 | 29340 | 247 |
| 52 | 40108 | 734 | 39777 | 38820 | 37357 | 35560 | 33648 | 31848 | 30383 | 29427 | 29093 | 245 |
| 53 | 39374 | 726 | 39057 | 38143 | 36745 | 35028 | 33201 | 31481 | 30081 | 29166 | 28848 | 242 |
| 54 | 38648 | 720 | 38347 | 37474 | 36139 | 34504 | 32759 | 31118 | 29782 | 28910 | 28606 | 240 |
| 55 | 37928 | 708 | 37641 | 36810 | 35539 | 33980 | 32320 | 30758 | 29485 | 28655 | 28366 | 236 |
| 56 | 37220 | 701 | 36947 | 36158 | 34938 | 33466 | 31888 | 30403 | 29193 | 28405 | 28130 | 235 |
| 57 | 36519 | 691 | 36258 | 35508 | 34362 | 32956 | 31459 | 30051 | 28905 | 28155 | 27895 | 232 |
| 58 | 35828 | 676 | 35579 | 34869 | 33784 | 32455 | 31036 | 29700 | 28618 | 27910 | 27663 | 223 |
| 59 | 35152 | 665 | 34918 | 34251 | 33226 | 31969 | 30629 | 29368 | 28344 | 27674 | 27440 | 23 |
|  | $180^{\circ}$ |  | $170^{\circ}$ | $160^{\circ}$ | $150^{\circ}$ | $140^{\circ}$ | $130^{\circ}$ | $120^{\circ}$ | $110^{\circ}$ | $100^{\circ}$ | $90^{\circ}$ |  |
|  | $180^{\circ}$ |  | $190^{\circ}$ | $200^{\circ}$ | $210^{\circ}$ | $220^{\circ}$ | $230^{\circ}$ | $240^{\circ}$ | $250^{\circ}$ | $260^{\circ}$ | $270^{\circ}$ |  |


| Tab |  |  | To convert feet on the Terrestrial Spheroid into Seconds of Arc, and conversely. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lat. | Log. M. |  | Arimuth from the Meridian, or $\mathbf{z ,}$ Log 0 |  |  |  |  |  |  |  | Log P . |  |
|  | $0^{\circ}$ 860 |  | $850^{\circ}$ | $\begin{gathered} 20^{\circ} \\ 840^{\circ} \end{gathered}$ | $380^{\circ}$ | $320^{\circ}$ | $810^{\circ}$ | $800^{\circ}$ | $\begin{aligned} & 70^{\circ} \\ & 290 \end{aligned}$ | $\begin{gathered} 80^{\circ} \\ 280^{\circ} \end{gathered}$ | $\begin{aligned} & 90^{\circ} \\ & 970 \end{aligned}$ | D. |
| 6 | 7.9934 |  |  |  |  |  |  |  |  |  |  |  |
| 61 | 3383 | 638 | 3363 | 33036 | 32127 | 31013 | 29828 | 28711 | 27802 | 27209 |  | 213 |
| 62 | 33197 | 623 | 3300 | 32447 | 31596 | 30551 | 29438 | 28391 | 27539 | 26984 | 26789 | 20 |
| 63 | 3257 | 608 | 32394 | 31874 | 31076 | 30099 | 29059 | 28080 | 27.283 | 26764 | 26582 | 203 |
| 64 | 3196 | 591 | 31797 | 31312 | 30569 | 29658 | 28889 | 27776 | 27033 | 26549 | 26379 | 197 |
| 65 | 31375 | 572 | 31221 | 30769 | 30071 | 29231 | 2832 | 27481 | 26790 | 26339 | 26182 | 191 |
| 66 | 30803 | 557 | 30659 | 30240 | 29600 | 28816 | 27980 | 27194 | 26553 | 26136 | 25 | 186 |
| 67 | 30246 | 539 | 30111 | 29726 | 29135 | 28412 | 27640 | 26917 | 26325 | 259 | 25 | 179 |
| 68 | 29707 | 520 | 29584 | 29230 | 28687 | 28022 | 27316 | 26646 | 26103 | 25749 | 25 | 174 |
| 69 | 29187 | 499 | 29074 | 28750 | 28252 | 27644 |  | 26388 | 25889 | 25565 | 25452 | 8 |
| 70 | 7.992868 |  |  |  |  |  |  |  |  |  |  |  |
| 71 | 28210 | 458 | 28118 | 27851 | 27440 | 26939 | 26403 | 25898 | 25489 | 25222 | 25127 |  |
| 72 | 27752 | 437 | 27669 | 27428 | 27057 | 26604 | 26121 | 25668 | 25297 | 25057 |  | 145 |
| 73 | 27315 | 417 | 27240 | 27024 | 26693 | 26888 | 25856 | 25450 | 25118 | 24904 | 24828 | 3 |
| 7 | 26898 | 392 | 26831 | 26640 | 26345 | 25985 | 25602 | 25241 | 24946 | 24756 | 24689 | 130 |
| 76 | 26506 | 368 | 26448 | 26378 | 26020 | 25703 | 25363 | 25045 | 24786 | 24619 | 24559 | 12 |
| 76 | 26138 | 344 | 26087 | 25939 | 25712 | 25436 | 25140 | 24861 | 24635 | 24488 | 24436 | 115 |
| 77 | 25794 | 322 | 25750 | 25622 | 25425 | 25186 | 24930 | 24688 | 24494 | 24366 | 24321 | 07 |
| 78 | 25472 | 296 | 25435 | 25325 | 25158 | 24953 | 24734 | 24528 | 24362 | 24254 | 24214 | 99 |
| 9 | 25176 | 273 | 25145 | 25052 | 24910 | 24739 | 24553 | 24379 | 24239 | 24147 | 24115 | 91 |
| 80 | 24903 | 250 | 24877 | 24799 | 24682 | 24541 | 24387 | 24244 | 24127 | 24048 | 24024 | 83 |
|  |  |  |  |  | $150^{\circ}$ | $140^{\circ}$ | $130{ }^{\circ}$ | $120^{\circ}$ | $110^{\circ}$ | $100^{\circ}$ | $90^{\circ}$ |  |
|  | $180^{\circ}$ |  | $190^{\circ}$ | $200^{\circ}$ | $210^{\circ}$ | $220^{\circ}$ | $230^{\circ}$ | $240^{\circ}$ | $250^{\circ}$ | $260^{\circ}$ | $270^{\circ}$ |  |

Table XX. To find the Seconds in the Intercepted Arc reduced,for the effect of refraction, as used in the computation of Heights.

| a | $\mathbf{L o g} \mathbf{M}^{\prime}$ |  | Aximuth from the Meridian $\mathrm{Z}, \mathrm{Log} \mathrm{O}^{\prime}$ |  |  |  |  |  |  |  | $\log \mathrm{P}^{\prime}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0{ }^{\circ}$ | $\begin{aligned} & \text { Diff } \\ & \text { Lat. } \end{aligned}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ | $\begin{aligned} & \text { Dif: } \\ & \text { Lat. } \end{aligned}$ |  |
| $\bigcirc$ | 7.619958 | 131 | 9871 | 9620 | 9235 | 8762 | 8258 | 7784 | 7398 | 7145 | 7058 |  | 0 |
| 10 | 9827 | 377 | 9743 | 9499 | 9126 | 8667 | 8179 | 7719 | 7345 | 7099 | 7014 | 126 | 80 |
| 20 | 9450 | 577 | 9373 | 9151 | 8811 | 8394 | 7949 | 7530 | 7189 | 6966 | 6888 | 192 | 70 |
| 30 | 8873 | 709 | 8807 | 8614 | 8331 | 7975 | 7597 | 7241 | 6950 | 6762 | 6696 | 236 | 60 |
| 40 | 8164 | 755 | 8113 | 7964 | 7738 | 7461 | 7165 | 6886 | 6659 | 6514 | 6460 | 252 | 50 |
| 50 | 7409 | 711 | 7372 | 7268 | 7109 | 6913 | 6705 | 6508 | 6348 | 6244 | 6208 | 237 | 40 |
| 60 | 6698 | 580 | 6676 | 6613 | 6516 | 6398 | 6271 | 6153 | 6056 | 5993 | 5971 | 193 | 30 |
| 70 | 6118 | 379 | 6108 | 6078 | 6032 | 5977 | 5918 | 5863 | 5817 | 5788 | 5778 | 127 | 20 |
| 80 | 5739 | 132 | 5738 | 5729 | 5717 | 5703 | 5688 | 5673 | 5662 | 5654 | 5651 | 44 | 10 |
| 90 | 5607 |  | 5607 | 5607 | 5607 | 5607 | 5607 | 5607 | 5607 | 5607 | 5607 |  | 0 |

Table XXI. To compute the Height of the place of Observation by the depression of the horizon of the sea.

| Lat. | $\mathbf{L o g} \mathbf{M}^{\prime \prime}$ | Azimuth from the Meridian, or $\mathrm{Z}, \mathrm{Log} \mathbf{0}^{\prime \prime}$ |  |  |  |  |  |  |  | Log P ${ }^{2 \prime}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0{ }^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ | Coint. |
| 0 | 6.454684 | 4771 | 5022 | 5407 | 5880 | 6384 | 6858 | 7244 | 7497 | 7584 | 88 |
| 10 | 4815 | 4899 | 5143 | 5516 | 5975 | 6463 | 6923 | 7297 | 7543 | 7628 | 80 |
| 20 | 5192 | 5269 | 5491 | 5831 | 6248 | 6693 | 7112 | 7453 | 7676 | 7754 | 70 |
| 30 | 5769 | 5835 | $6{ }^{6} 28$ | 6311 | 6667 | 7045 | 7401 | 7692 | 7880 | 7946 | 60 |
| 40 | 6478 | 6529 | 6678 | 6904 | 7181 | 7477 | 7756 | 7983 | $81: 38$ | 8182 | 50 |
| 50 | 7233 | 7270 | 7374 | 7533 | 7729 | 7937 | 8134 | 8294 | 8398 | 8434 | 40 |
| 60 | 7944 | 7965 | 8029 | 8126 | 8244 | 8371 | 8489 | 8586 | 8649 | 8671 | 30 |
| 70 | 8524 | 8534 | 8564 | 8610 | 8665 | 8724 | 8779 | 8825 | 8854 | 8864 | 20 |
| 80 | 8903 | 8904 | 8913 | 8925 | 8939 | 8954 | 8969 | 8980 | 8988 | 8991 | 10 |
| 90 | 9035 | 9035 | 9035 | 9035 | 9035 | 9035 | 9035 | 9035 | 9035 | 9035 | 0 |
| Lat. | $180^{\circ}$ | $170^{\circ}$ | $160^{\circ}$ | $150^{\circ}$ | $140^{\circ}$ | $130^{\circ}$ | $120^{\circ}$ | $110^{\circ}$ | $100^{\circ}$ | $90^{\circ}$ | Col |


|  |  |  | L8 | III. | Reduc | n | $l$. | tracti |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{p}^{\prime \prime}$ | $\lambda$ |  |  |  |  |  |  |  |  |  |
|  | 0 | $10^{\circ}$ | $20^{\circ}$ | $3)^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ |
|  | " |  |  |  | " |  |  |  |  |  |
| 8 Ó | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 000.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 |
| 2 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.08 | 0.13 | 0.27 | 0 20.000 |
| 4 | 0.00 0.00 | 0.03 | 0.05 | 0.05 0.08 | 0.08 0.12 | 0.11 | 0.16 | 0.26 0.39 | 0.54 | . 00 |
| 5 | 0.00 | 0.04 | 0.09 | 0.14 | 0.20 | 0.28 | 0.41 | 0.65 | 1.85 | 4 5 0 |
| 6 | 0.00 | 0.06 | 0.12 | 0.19 | 0.28 | 0.40 | 0.58 | 0.91 | 1.89 | 0  <br> 0 6 |
| 7 | 0.00 | 0.08 | 0.16 | 0.25 | 0.36 | 0.54 | 0.73 | 1.17 | 2.43 | 070.00 |
| 8 | 0.00 | 0.10 | 0.21 | 0.31 | 0.48 | 0.68 | 0.99 | 1.57 | 3.24 | 080.00 |
| 9 | 0.00 | 0.13 | 0.26 | 0.41 | 0.60 | 0.85 | 1.23 | 1.96 | 4.05 | 90.00 |
| 10 | 0.00 | 0.15 | 0.31 | 0.49 | 0.72 | 1.00 | 1.48 | 2.38 | 4.85 | 0100.00 |
| 11 | 0.00 | 0.18 | 0.38 | 0.60 | 0.88 | 1.20 | 1.80 | 2.90 | 5.80 | 0110.00 |
| 12 | 0.00 | 0.22 | 0.45 | 0.72 | 1.05 | 1.46 | 2.20 | 3.40 | 7.00 | 0120.00 |
| 13 | 0.00 | 0.26 | 0.53 | 0.86 | 1.23 | 1.72 | 2.60 | 4.00 | 8.25 | 0130.00 |
| 14 | 0.00 | 0.30 | 0.62 | 1.00 | 1.44 | 2.00 | 3.00 | 4.70 | 9.55 | O 140.00 |
| 15 | 0.00 | 0.34 | 0.72 | 1.14 | 1.66 | 2.30 | 3.40 | 5.40 | 11.00 | 0150.00 |
| 16 | 0.00 | 0.39 | 0.82 | 1.30 | 1.88 | 2.64 | 3.87 | 6.20 | 12.60 | 0160.00 |
| 17 | 0.00 | ${ }_{0}^{0.44}$ | 0.92 | 1.46 | 2.13 | 3.00 | 4.44 | 7.05 | 14.25 | 0170.00 |
| 18 | 0.00 | 0.50 | 1.03 | 1.64 | 2.38 | 3.37 | 5.00 | 7.90 | 16.00 | 0180.00 |
| 19 | 0.00 | 0.55 | 1.14 | 1.82 | 2.64 | 3.75 | 5.50 | 8.70 | 17.70 | 0190.00 |
| 020 | 0.00 | 0.61 | 1.26 | 2.01 | 2.92 | 4.11 | 6.00 | 9.50 | 19.54 | 0200.00 |
| 21 | 0.00 | 0.67 | 1.40 | 2.22 | 3.23 | 4.55 | 6.68 | 10.60 | 21.70 | 0210.00 |
| 22 | 0.00 | 0.74 | 1.53 | 2.43 | 3.56 | 5.00 | 7.30 | 11.70 | 23.70 | 0 220.00 |
| 23 | 0.00 | 0.81 | 1.67 | 2.65 | 3.88 | 5.45 | 8.00 | 12.80 | 26.00 | 0230.00 |
| 24 | 0.00 | 0.88 | 183 | 2.90 | 4.23 | 6.00 | 8.74 | 13.90 | 28.40 | 0240.00 |
| 25 | 0.00 | 0.96 | 1.98 | 3.15 | 4.58 | 6.50 | 9.50 | 15.00 | 30.85 | O 250.00 |
| $\stackrel{26}{ }$ | 0.00 | 1.05 | 2.14 | 3.40 | 4.94 | 7.00 | 10.28 | 16.20 | 33.40 | 026000 |
| 27 | 0.00 | 1.14 | 2.32 | 3.68 | 5.34 | 7.55 | 17.10 | 17.50 | 36.00 | 0 270.00 |
| 28 | 0.00 | 1.22 | 2.49 | 3.95 | 5.74 | 8.12 | 11.90 | 18.80 | 38.65 | O280.00 |
| 29 | 0.00 | 1.30 | 2.67 | 4.25 | 6.14 | 8.73 | 12.70 | 20.20 | 41.35 | 0290.00 |
| 030 | 0.00 | 1.38 | 285 | 4.53 | 6.58 | 9.34 | 13.60 | 21.50 | 44.20 | 0300.00 |
|  | 0.00 | 1.48 | 3.04 | 4.84 | 7.03 | 10.00 | 14.60 | 23.10 | 47.50 | 0310.00 |
| 32 | 0.00 | 1.58 | 3.23 | 5.16 | 7.47. | 10.60 | 15.50 | 24.50 | 50.50 | 0320.00 |
| 33 | 0.00 | 1.68 | 3.43 | 5.50 | 7.94 | 11.30 | 16.50 | 26.10 | 53.75 | 0330.00 |
| 34 | 0.00 | 1.78 | 3.65 | 5.83 | 8.44 | 12.00 | 17.50 | 27.70 | 57.00 | 0340.00 |
| 35 | 0.00 | 1.88 | 3.88 | 6.17 | 8.94 | 12.73 | 18.50 | 29.40 | 10.50 | 0350.00 |
| 36 | 0.00 | 1.99 | 4.11 | 6.53 | 9.48 | 13.45 | 19.60 | 31.10 | 4.00 | 0360.00 |
| 37 | 0.00 | 2.11 | 4.34 | 6.90 | 10.00 | 14.20 | 20.70 | 32.90 | 7.75 | 0 370.00 |
| ${ }_{39}^{38}$ | 0.00 | ${ }_{2}^{2.23}$ | 4.57 | 7.28 | 10.55 | 15.00 | 21.80 | 34.60 | 111.25 | ${ }^{0} 380.00$ |
| 39 | 0.00 | 2.35 | 4.82 | 7.66 | 11.12 | 15.80 | 23.00 | 36.40 | 115.00 | 0390.00 |
|  | 0.00 | 2.46 | 5.09 | 8.06 | 11.72 | 16.62 | 24.25 | 38.39 | 119.00 | 0400.00 |
|  | 0.00 | 2.58 | 5.35 | 8.45 | 12.30 | 17.47 | 25.40 | 40.30 | 123.00 | 0410.00 |
| 42 | 0.00 | 2.71 | 5.60 | 8.85 | 12.90 | 18.34 | 26.69 | 42.30 | 127.00 | 0420.00 |
| 43 | 0.00 | 2.84 | 5.88 | 9.28 | 13.54 | 19.20 | 28.00 | 44.40 | 131.30 | 0430.00 |
| 44 | 0.00 | 2.98 | 6.15 | 9.73 | 14.20 | 20.10 | 29.32 | 46.50 | 135.60 | 0440.00 |
| 45 | 0.00 | 3.12 | 6.43 | 10.20 | 14.84 | 21.05 | 30.67 | 48.60 | 140.00 | 0450.00 |
| 46 | 0.00 | 3.26 | 6.72 | 10.67 | 15.50 | 22.00 | 32.03 | $50: 80$ | 144.50 | 0460.00 |
| 47 | 0.00 | 3.40 | 7.02 | 11.13 | 16.14 | 22.95 | 33.40 | 53.00 | 149.00 | 0470.00 |
| 48 | 0.00 | 3.54 | 7.32 | 11.60 | 16.84 | 23.94 | 34.80 | 55.20 | 153.70 | 0480.00 |
| 49 | 0.00 | 3.69 | 7.63 | 12.08 | 17.54 | 24.96 | 36.23 | 57.50 | 158.60 | 0490.00 |
|  | 0.00 | 3.84 | 7.95 | 12.58 | 18.27 | 26.06 | 37.65 | 69.90 | 23.30 | 0500.00 |
| 51 | 0.00 | 3.99 | 8.26 | 13.10 | 19.04 | 27.06 | 39.30 | 12.40 | 28840 | O 510.00 |
| 52 | 0.00 | 4.17 | 8.58 | 13.61 | 19.80 | ${ }_{2917}^{28.10}$ | 40 | $\begin{array}{ll}1 & 4.80 \\ 1 & 7.30\end{array}$ | 2 13.50 | $\begin{array}{lll}0 & 52 & 0.00 \\ 0 & 53 & 0.00\end{array}$ |
| 53 | 0.00 | 4.32 | 8.92 | 14.13 | 20.54 | 29.17 | 42.50 | 17.30 | 218.60 | 0 530.00 |
| 54 | 0.00 | 4.49 | 9.27 | 14.67 | 21.34 | 30.35 315 | 44.10 | $1{ }^{1} 9.90$ | 2 23.80 | O $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 055 \\ & 050.00\end{aligned}$ |
| 55 | 0.00 0.00 | 4.66 4.82 | ${ }_{9.97}^{9.6}$ | 15.23 | $\frac{22.14}{22.94}$ | 31.45 <br> 32.58 | 45.70 47.40 | 1 112.20 | 2 24.80 | (1)0 55 <br> 0 56 <br> 0 0.00 |
| 57 | 0.00 | 5.00 | 10.32 | 16.35 | 23.80 | 33.75 | 49.10 | 117.90 | 240.40 | O 570.00 |
| 58 | 0.00 | 5.18 | 10.67 | 16.93 | 24.64 | 34.95 | 50.83 | 120.70 | 246.00 | 0580.00 |
| 59 | 0.00 | 5.36 | 11.05 | 17.51 | 25.50 | 36.20 | 52.64 | 123.60 | 251.80 | 0590.00 |
| $\begin{array}{rr} \hline 1 & 0 \\ 1 & 10 \\ 1 & 20 \end{array}$ | 0.00 |  |  |  |  |  | 64.30 | 126.40 | 257.80 | $1 \begin{array}{lll}1 & 0 & 0.00 \\ 1 & 0\end{array}$ |
|  | 0.00 | 7.54 | 15.55 | 24.68 | 35.88 | - 50.90 | 113.90 | $1{ }^{1} 57.36$ | ${ }^{4} 1.54$ | ${ }_{1}^{1} 100.00$ |
|  | 0.00 | 9.85 | 20.33 | 32.25 | 46.84 | 16.50 | 136.74 | 233.26 | 515.27 | 1200.00 |
|  |  |  |  |  |  |  |  |  |  |  |


| Table XXII . Reduction of $\lambda$ to $l$. Subtractive. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{p}^{\prime \prime}$ | $\lambda$ |  |  |  |  |  |  |  |  |  |
|  | $60^{\circ}$ | $51^{\circ}$ | $52^{\circ}$ | $53^{\circ}$ | $54^{\circ}$ | $55^{\circ}$ | $56^{\circ}$ | $57^{\circ}$ | $58^{\circ}$ | $59^{\circ}$ |
| $\bigcirc \cdot$ | " | $\stackrel{7}{7}$ | " | " | " | " | " | 7 | " | " |
| 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | $0: 00$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 |
| 3 | 0.11 | 0.12 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 |
| 4 | 0.16 | 0.17 | 0.18 | 0.19 | 0.20 | 0.20 | 0.21 | 0.22 | 0.23 | 0.24 |
| 5 | 0.28 | 0.30 | 0.30 | 0.32 | 0.33 | 0.34 | 0.35 | 0.37 | 0.38 | 0.39 |
| 6 | 0.40 | 0.42 | 0.42 | 0.44 | 0.46 | 0.48 | 0.49 | 0.51 | 0.53 | 0.55 |
| 7 | 0.64 | 0.55 | 0.55 | 0.57 | 0.59 | 0.61 | 0.63 | 0.66 | 0.68 | 0.71 |
| 8 | 0.68 | 0.71 | 0.73 | 0.76 | 0.78 | 0.82 | 0.84 | 0.88 | 0.91 | 0.94 |
| 9 | 0.85 | 0.88 | 0.91 | 0.95 | 0.98 | 1.04 | 1.07 | 1.10. | 1.14 | 1.18 |
| 010 | 1.00 | 1.08 | 1.12 | 1.13 | 1.20 | 1.24 | 1.28 | 1.32 | 1.38 | 1.43 |
| 11 | 1.20 | 1.30 | 1.33 | 1.35 | 1.46 | 1.48 | 1.56 | 1.59 | 1.66 | 1.71 |
| 12 | 1.46 | 1.51 | 1.58 | 1.63 | 1.75 | 1.75 | 1.86 | 1.90 | 1.98 | 2.03 |
| 13 | 1.72 | 1.81 | 1.88 | 1.93 | 2.06 | 2.10 | 2.20 | 2.26 | 2.34 | 2.40 |
| 14 | 2.00 | 2.10 | 2.22 | 2.25 | 2.38 | 2.46 | 2.56 | 2.64 | 2.72 | 2.80 |
| 15 | 2.30 | 2.41 | 2.58 | 2.60 | 2.72 | 2.82 | 2.94 | 3.03 | 3.12 | 3.25 |
| 16 | 2.64 | 2.75 | 2.95 | 2.98 | 3.08 | 3.20 | 3.35 | 3.45 | 3.55 | 3.71 |
| 17 | 3.00 | 3.12 | 3.32 | 3.37 | 3.49 | 3.62 | 3.77 | 3.90 | 4.00 | 4.19 |
| 18 | 3.37 | 3.50 | 3.70 | 3.78 | 3.91 | 4.05 | 4.20 | 4.36 | 4.48 | 4.70 |
| 19 | 3.75 | 3.88 | 4.12 | 4.20 | 4.34 | 4.48 | 4.63 | 4.83 | 5.00 | 5.24 |
| 020 | 4.11 | 4.30 | 4.52 | 4.64 | 4.80 | 4.95 | 5.14 | 5.33 | 5.53 | 6.79 |
| 21 | 4.55 | 4.74 | 4.97 | 5.09 | 5.30 | 5.48 | 5.68 | 5.87 | 6.11 | 6.39 |
| 2.2 | 5.00 | 5.20 | 5.42 | 5.58 | 5.82 | 6.05 | 6.25 | 6.46 | 6.73 | 7.00 |
| 23 | 5.45 | 5.72 | 5.91 | 6.10 | 6.35 | 6.62 | 6.85 | 7.08 | 7.38 | 7.63 |
| 24 | 6.00 | 6.24 | 6.48 | 6.66 | 6.90 | 7.20 | 7.48 | 7.73 | 8.06 | 8.33 |
| 25 | 6.50 | 6.78 | 7.00 | 7.25 | 7.50 | 7.80 | 8.12 | 8.40 | 8.76 | 9.06 |
| 26 | 7.00 | 7.32 | 7.54 | 7.83 | 8.13 | 8.43 | 8.77 | 9.09 | 9.48 | 9.79 |
| 27 | 7.55 | 7.88 | 8.15 | 8.44 | 8.78 | 9.12 | 9.44 | 9.80 | 10.23 | 10.58 |
| 28 | 8.12 | 8.46 | 8.78 | 9.07 | 9.45 | 9.82 | 10.16 | 10.53 | 10.99 | 11.39 |
| 29 | 8.73 | 9.06 | 9.42 | 9.74 | 10.13 | 10.54 | 10.92 | 11.30 | 11.76 | 12.24 |
| 030 | 9.34 | 9.70 | 10.06 | 10.40 | 10.85 | 11.26 | 11.69 | 12.09 | 12.55 | 13.07 |
| 31 | 10.00 | 10.36 | 10.74 | 11.13 | 11.59 | 12.00 | 12.48 | 12.91 | 13.38 | 13.95 |
| 32 | 10.60 | 11.03 | 11.45 | 11.88 | 12.35 | 12.75 | 13.28 | 13.77 | 14.24 | 14.87 |
| 33 | 11.30 | 11.70 | 12.18 | 12.63 | 13.13 | 13.57 | 14.09 | 14.66 | 15.13 | 15.81 |
| 34 | 12.00 | 12.40 | 12.93 | 13.38 | 13.92 | 14.41 | 14.93 | 15.56 | 16.05 | 16.79 |
| 35 | 12.73 | 13.14 | 13.73 | 14.16 | 14.72 | 15.27 | 15.80 | 16.48 | 17.02 | 17.85 |
| 36 | 13.45 | 13.93 | 14.54 | 15.00 | 15.57 | 16.14 | 16.71 | 17.43 | 18.04 | 18.93 |
| 37 | 14.20 | 14.73 | 15.35 | 15.85 | 16.44 | 17.07 | 17.67 | 18.40 | 19.09 | 19.95 |
| 38 | 15.00 | 15.55 | 16.18 | 16.70 | 17.34 | 18.00 | 18.65 | 19.41 | 20.15 | 21.00 |
| 39 | 15.80 | 16.40 | 17.00 | 17.57 | 18.24 | 18.95 | 19.63 | 20.44 | 21.23 | 22.08 |
| 040 | 16.62 | 17.25 | 17.89 | 18.51 | 19.20 | 20.00 | 20.70 | 21.51 | 22.33 | 23.24 |
| 41 | 17.47 | 18.12 | 18.79 | 19.47 | 20.18 | 21.00 | 21.77 | 22.60 | 23.46 | 24.41 |
| 42 | 18.34 | 19.00 | 19.73 | 20.45 | 21.20 | 22.00 | 22.86 | 23.73 | 24.61 | 25.63 |
| 43 | 19.20 | 19.93 | 20.69 | 21.44 | 22.24 | 23.07 | 23.96 | 24.88 | 25.81 | 26.87 |
| 44 | 20.10 | 20.87 | 21.66 | 22.45 | 23.30 | 24.14 | 25.08 | 26.04 | 27.03 | 28.12 |
| 45 | 21.05 | 21.82 | 22.64 | 23.47 | 24.37 | 25.27 | 26.23 | 27.22 | 28.27 | 29.39 |
| 46 | 22.00 | 22.82 | 23.62 | 24.50 | 25.46 | 26.42 | 27.39 | 28.42 | 29.53 | 30.70 |
| 47 | 22.95 | 23.83 | 24.68 | 25.58 | 26.56 | 27.60 | 28.57 | 29.67 | 30.82 | 32.05 |
| 48 | 23.94 | 24.84 | 25.76 | 26.70 | 27.68 | 28.78 | 29.79 | 30.94 | 32.15 | 33.43 |
| 49 | 24.96 | 25.85 | 26.85 | 27.88 | 28.83 | 29.96 | 31.04 | 32.22 | 33.51 | 34.85 |
| 050 | 26.06 | 26.92 | 27.93 | 28.98 | 30.03 | 31.20 | 32.33 | 33.57 | 34.88 | 36.30 |
| 51 | 27.06 | 28.01 | 29.06 | 30.13 | 31.26 | 32.46 | 33.65 | 34.95 | 36.30 | 37.78 |
| 52 | 28.10 | 29.12 | 30.19 | 31.32 | 32.51 | 33.75 | 35.00 | 36.34 | 37.76 | 39.27 |
| 53 | 29.17 | 30.24 | 31.36 | 32.53 | 33.78 | 35.05 | 36.37 | 37.75 | 39.23 | 40.79 |
| 54 | 30.35 | 31.41 | 32.56 | 33.76 | 35.07 | 36.35 | 37.75 | 39.20 | 40.72 | 42.32 |
| 55 | 31.45 | 32.59 | 33.79 | 35.03 | 36.37 | 37.70 | 39.14 | 40.66 | 42.23 | 43.90 |
| 56 | 32.58 | 33.76 | 35.04 | 36.32 | 37.69 | 39.07 | 40.56 | 42.15 | 43.76 | 45.52 |
| 57 | 33.75 | 35.00 | 36.30 | 37.63 | 39.04 | 40.48 | 42.02 | 43.66 | 45.32 | 47.16 |
| 68 69 | 34.95 36.20 | 36.24 | 37.58 | 38.96 | 40.43 | 41.93 | 43.50 45.03 | 45.22 | 46.92 | 48.84 |
| 59 | 36.20 | 37.53 | 38.90 | 40.31 | 41.85 | 43.41 | 45.03 | 46.81 | 48.57 | 50.55 |
|  |  | 38.82 |  |  | 43.33 |  |  |  |  |  |
| $\begin{array}{ll}1 & 10 \\ 1 & 20\end{array}$ | - 50.90 | , 51.82 | , 54.73 | , 56.69 | , 58.85 | i 1.88 | $1{ }^{1} 3.63$ | 15.80 | 18.38 | í 11.08 |
| 120 | 16.50 | 19.06 | í 11.48 | I 14.13 | i 16.85 | 119.75 | 122.77 | 126.00 | 129.36 | 132.87 |

Table XXIV. 'To reduce a base at the level of the sea to any height above it, and conversely, \&c.

| $h$ | mi $h+$ | $a$ | $p a 2-$ | $s+$ | $\Delta$, | Arg. | Eq. $\Delta_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feet. | Correction. | Feet. | Correction. | Reduction. | + |  |  |
| 1000 | 0.0000208 | 100000 | 0.0000004 | 0.0000008 | 26 | 1 | 0.8 |
| 2000 | 0.0000415 | 200000 | 0.0000017 | 0.0000034 | 44 | 2 | 1.4 |
| 3000 | 0.0000623 | 300000 | 0.0000037 | 0.0000078 | 60 | 3 | 1.8 |
| 4000 | 0.0000830 | 400000 | 0.0000065 | 0.0000138 | 78 | 4 | 2.0 |
| 5000 | 0.0001038 | 500000 | 0.0000103 | 0.0000216 | 94 | 5 | 2.1 |
| 6000 | 0.0001246 | 600000 | 0.0000149 | 0.0000310 | 112 | 6 | 2.0 |
| 7000 | 0.0001453 | 700000 | 0.0000203 | 0.0000422 | 130 | 7 | 1.8 |
| 8000 | 0.0001651 | 800000 | 0.0000265 | 0.0000552 | 147 | 8 | 1.4 |
| 9000 | 0.0001868 | 900000 | 0.0000335 | 0.0000699 |  | 9 | 0.8 |

To facilitate the calculation of arcs on the terrestrial spheroid, as well as various operations in Geodesy, the following table to $\quad \frac{1}{\delta} \delta$ of compression has been furmed.

Table XXV. The measure of one minute of arc at each degree of latitude in English feet.

| Latitude. | Minute of Latitude. | Minute of Longitude. | Minute of Perpendic. | Latitude. | Minute of Latitude. | Minute of Longitude. | Minute of Perpendic. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\circ}{0}$ | Feet. | Feet. | Feet. 60857 | $\stackrel{\circ}{45}$ | Fext. $6075.7$ | Feet. 43103 | Feet. |
| 1 | 6045.9 | 6084.8 | 6085.7 | 46 | 6076.7 | 4234.7 | 6096.0 |
| 2 | 6046.0 | 6082.0 | 6085.7 | 47 | 6077.8 | 4157.7 | 6096.4 |
| 3 | 6046.0 | 6077.4 | 6085.8 | 48 | 6078.8 | 4079.5 | 6096.7 |
| 4 | 6046.1 | 6071.0 | 6085.8 | 49 | 6079.8 | 4000.0 | 6097.1 |
| 5 | 6046.3 | 6062.7 | 6085.9 | 50 | 6080.9 | 3919.3 | 6097.4 |
| 6 | 6046.5 | 6052.6 | 6085.9 | 51 | 6081.9 | 3837.4 | 6097.8 |
| 7 | 6046.7 | 6040.6 | 6086.0 | 52 | 6082.9 | 9754.4 | 6098.1 |
| 8 | 6047.0 | 6026.9 | 6086.1 | 53 | 6083.9 | 3670.1 | 6098.4 |
| 9 | 6047.3 | 6011.3 | 6086.2 | 54 | 6084.9 | 3584.8 | 6098.8 |
| 10 | 6047.6 | 5993.8 | 6086.3 | 55 | 6085.9 | 3498.3 | 6099.1 |
| 11 | 6048.0 | 5974.6 | 6086.4 | 56 | 6086.9 | 3410.8 | 6099.4 |
| 12 | 6048.4 | 5953.6 | 6086.6 | 57 | 6087.9 | 3322.2 | 6099.8 |
| 13 | 6048.9 | 5930.7 | 6086.7 | 58 | 6088.8 | 3232.5 | 6100.1 |
| 14 | 6049.3 | 5906.1 | 6086.9 | 59 | 6089.7 | 3141.9 | 6100.4 |
| 15 | 6049.8 | 5879.6 | 6087.0 | 60 | 6040.7 | 3050.3 | 6100.7 |
| 16 | 6050.4 | 5851.4 | 6087.2 | 61 | 6091.6 | 2957.8 | 6101.0 |
| 17 | 6050.9 | 5821.4 | 6087.4 | 62 | 6092.4 | 2864.4 | 6101.3 |
| 18 | 6051.5 | 5789.7 | 6087.6 | 63 | 6093.3 | 2770.1 | 6101.6 |
| 19 | 6052.2 | 5756.1 | 6087.8 | 64 | 6094.1 | 2674.9 | 6101.9 |
| 20 | 6052.8 | 5720.9 | 6088.0 | 65 | 6095.0 | 2578.9 | 6102.1 |
| 21 | 6053.5 | 5683.9 | 6088.3 | 66 | 6095.7 | 2482.1 | 6102.4 |
| 22 | 6054.2 | 5645.2 | 6088.5 | 67 | 6096.5 | 2384.5 | 6102.7 |
| 23 | 6054.9 | 5604.7 | 6088.7 | 68 | 6097.3 | 2286.2 | 6102.9 |
| 24 | 6055.7 | 5562.6 | 6089.0 | 69 | 6098.0 | 2187.2 | 6103.1 |
| 25 | 6056.5 | 5518.7 | 6089.3 | 70 | 6098.7 | 2087.5 | 6103.4 |
| 26 | 6057.3 | 5473.2 | 6089.5 | 71 | 6099.3 | 1987.1 | 6103.6 |
| 27 | 6058.1 | 5426.1 | 6089.8 | 72 | 6100.0 | 1886.2 | 6103.8 |
| 28 | 6059.0 | 5377.2 . | 6090.1 | 73 | 6100.6 | 1784.6 | 6104.0 |
| 29 | 6059.8 | 5326.8 | 6090.3 | 74 | 6101.1 | 1682.5 | 6104.2 |
| 30 | 6000.7 | 5274.7 | 6090.7 | 75 | 6101.7 | 1579.9 | 6104.4 |
| 31 | 6061.6 | 5221.0 | 6091.0 | 76 | 6102.2 | 1476.8 | 6104.5 |
| 32 | 6062.6 | 5165.7 | 6091.3 | 77 | 6102.7 | 1373.3 | 6104.7 |
| 33 | 6063.5 | 5108.9 | 6091.6 | 78 | 6103.1 | 1269.3 | 6104.8 |
| 34 | 6064.5 | 5050.4 | 6091.9 | 79 | 6103.5 | 1164.9 | 6105.0 |
| 35 | 6065.4 | 4990.5 | 6092.3 | 80 | 6103.9 | 1060.1 | 6105.1 |
| 36 | 6066.4 | 4929.0 | 6092.6 | 81 | 6104.2 | 995.1 | 6105.2 |
| 37 | 6067.4 | 4866.0 | 6092.9 | 82 | 6104.6 | 849.7 | 6105.3 |
| 38 | 6068.4 | 4801.6 | 6093.3 | 83 | 6104.8 | 744.1 | 6105.4 |
| 39 | 6069.5 | 4735.5 | 6093.6 | 84 | 6105.1 | 638.2 | 6105.5 |
| 40 | 6070.5 | 4608.2 | 6093.9 | 85 | 6105.3 | 532.1 | 5105.6 |
| 41 | 6071.5 | 4599.4 | 6091.3 | 86 | 6105.4 | 425.9 | 6105.6 |
| 42 | 6072.5 | 4529.2 | 6094.6 | 87 | 6105.6 | 319.5 | 6105.7 |
| 43 | 6073.6 | 4457.6 | 6095.0 | 88 | 6105.6 | 213.1 | 6105.7 |
| 44 | 6074.6 | 4384.6 | 6095.3 | 89 | 6103.7 | 106.6 | 6105.7 |
| 45 | 6075.7 | 4310.3 | 6095.7 | 90 | 6105.7 | 0.0 | 6105.7 |


| Table XXVI. |  |
| :---: | :---: |
| To change mean Solar into Sidereal Time. | To change Sidereal into mean Solar Time. |


| ( Solar | Add | ( $\begin{aligned} & \text { Solar } \\ & \text { Min. }\end{aligned}$ | Add secondr. | $\underset{\substack{\text { solar } \\ \text { See. }}}{ }$ | Add Pars of a Sec. | $\begin{aligned} & \text { Sidereal } \\ & \text { Days. } \end{aligned}$ | Subtract | Sider. <br> Min. | Subirnct Seecnds. | (tider. | Sticter. Pus. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h. m. ${ }_{0}{ }^{5}$ | 1 | 0.164 | 1 | 0.003 | 1 |  | 1 | 0.164 | 1 | 0.003 |
| 2 | 10763.111 | 2 | 0.329 | 2 | 0.006 | 2 | 0751.819 | 2 | 0.328 | 2 | 0.005 |
| 3 | 01149.666 | 3 | 0.493 | 3 | 0.008 | 3 | 01147.728 | 3 | 0.491 | 3 | 0.008 |
| 4 | 01546.221 | 4 | 0.658 | 4 | 0.011 | 4 | 01543.638 | 4 | 0.655 | 4 | 0.011 |
| 5 | 01942.777 | 5 | 0.822 | 5 | 0.014 | 5 | 01939.547 | 5 | 0.819 | 5 | 0.014 |
| 6 | 0 2339.332 | 6 | 0.986 | 6 | 0.017 | 6 | 02335.457 | 6 | 0.983 | 6 | 0.016 |
| 7 | 0 2735.887 | 7 | 1.150 | 7 | 0.019 | 7 | 0 2731.366 | 7 | 1.147 | 7 | 0.019 |
| 8 | 03132.443 | 8 | 1.315 | 8 | 0.022 | 8 | 03127.276 | 8 | 1.311 | 8 | 0.022 |
| 8 | - 3528.998 | 9 | 1.479 | 9 | 0.025 | 9 | 103523.185 | 9 | 1.474 | 9 | 0.025 |
| 10 | 03925.553 | 10 | 1.643 | 10 | 0.027 | 10 | 03919.094 | 10 | 1.638 | 10 | 0.027 |
| 11 | 04322.109 | 11 | 1.807 | 11 | 0.030 | 11 | 04315.004 | 11 | 1.802 | 11 | 0.030 |
| 12 | 04718.664 | 12 | 1.972 | 12 | 0.033 | 12 | 04710.913 | 12 | 1.986 | 12 | 0.032 |
| 13 | 05115.220 | 13 | 2.136 | 13 | 0.036 | 13 | 0516.823 | 13 | 2.130 | 13 | 0.035 |
| 14 | 05511.775 | 14 | 2.300 | 14 | 0.038 | 14 | - 555 | 14 | 2.294 | 14 | 0.038 |
| 15 | O 5988.330 | 15 | 2.464 | 15 | 0.041 | 15 | 105858.642 | 15 | 2.457 | 15 | 0.041 |
| 16 | $\begin{array}{lll}1 & 3 & 4.886\end{array}$ | 16 | 2.629 | 16 | 0.044 | 16 | 1254.551 | 16 | 2.621 | 16 | 0.044 |
| 17 | $\begin{array}{llll}1 & 7 & 1.441\end{array}$ | 17 | 2.793 | 17 | 0.047 | 17 | $1{ }^{1} 6550.451$ | 17 | 2.785 | 17 | 0.048 |
| 18 | 11057.996 | 18 | 2.957 | 18 | 0.050 | 18 | 11046.370 | 18 | 2.949 | 18 | 0.049 |
| 19 | 11454.552 | 19 | 3.121 | 19 | 0.053 | 19 | 11442.280 | 19 | 3.113 | 19 | 0.052 |
| 20 | 11851.107 | 20 | 3.286 | 20 | 0.055 | 20 | 11838.189 | 20 | 3.277 | 20 | 0.065 |
| 21 | 12246.662 | 21 | 3.450 | 21 | 0.058 | 21 | 12234.498 | 21 | 3.440 | 21 | 0.057 |
| 22 | 12644.218 | 22 | 3.614 | 22 | 0.061 | 22 | 12630.048 | 22 | 3.604 | 22 | 0.060 |
| 23 | 13040.773 | 23 | 3.779 | 23 | 0.064 | 23 | 13025.917 | 23 | 3.768 | 23 | 0.063 |
| 24 | 13437.328 | 24 | 3.943 | 24 | 0.066 | 24 | 13421.827 | 24 | 3.932 | 24 | 0.066 |
| 25 | 13833.884 | 25 | 4.108 | 25 | 0.069 | 25 | 13817.736 | 25 | 4.096 | 25 | 0.068 |
| 26 | 14230.439 | 26 | 4.272 | 26 | 0.072 | 26 | 14213.646 | 26 | 4.259 | 26 | 0.071 |
| 27 | 14626.994 | 27 | 4.436 | 27 | 0.075 | 27 | 146 | 27 | 4.423 | 27 | 0.074 |
| 28 | 15023.550 | 28 | 4.600 | 28 | 0.077 | 28 | $1 \begin{array}{lll}1 & 50 & 5.465\end{array}$ | 28 | 4.587 | 28 | 0.076 |
| 29 | 15420.105 | 29 | 4.764 | 29 | 0.080 | 29 | $\begin{array}{llll}1 & 54 & 1.374\end{array}$ | 29 | 4.751 | 29 | 0.079 |
| 30 | 15816.660 | 30 | 4.928 | 30 | 0.082 | 30 | 11 57 <br> 1.283  | 30 | 4.915 | 30 | 0.082 |
| 31 32 | $\begin{array}{cccc}2 & 2 & 13.216 \\ 2 & 6 & 9.771\end{array}$ | 31 32 | 5.092 5.257 | 31 | 0.085 | 31 | $2{ }_{2}^{2} 11553.193$ | 31 | 5.079 | 31 | 0.085 |
| 32 33 | $\begin{array}{llll}2 & 6 & 9.771 \\ 2 & 10 & 6.326\end{array}$ | 32 33 | 5.257 5.421 | 32 | 0.088 0.091 | 32 | $1 \begin{array}{llll}2 & 5 & 49.102\end{array}$ | 32 | 5.242 | 32 | 0.087 |
| 34 | 214 | 34 | 5.585 | 34 | 0.094 | 33 | $2{ }^{2} 9845.012$ | 33 | 5.406 | 33 | 0.090 |
| 35 | 2 1759.437 | 35 | 5.750 | 34 35 | 0.097 | 34 35 | 2 13 40.921 <br> 2 17 36.831 | 34 35 | 5.570 5.734 | 34 35 | 0.093 0.096 |
| Sol. Mrs | m. ${ }^{2}$ | 36 | 5.914 | 36 | 0.100 |  |  |  |  |  |  |
| 1 | 0 9.8 .8565 | 37 | 6.078 | 37 | 0.102 | 1 | $\begin{array}{ll}0 & 9.829\end{array}$ | 37 | 6.062 | 36 | 0.098 |
| 2 | ${ }_{0} 19.713$ | 38 | 6.242 | 38 | 0.105 | 2 | 019.659 | 38 | 6.225 | 38 | 0.104 |
| 3 | 029.569 | 39 | 6.407 | 39 | 0.107 | 3 | 029.489 | 39 | 6.389 | 39 | 0.106 |
| 4 | 039.426 | 40 | 6.571 | 40 | 0.110 | 4 | 039.318 | 40 | 6.553 | 40 | 0.109 |
|  |  | 41 | 6.735 |  | 0.113 | 5 | 049.148 | 41 | 6.717 | 41 | 0.112 |
| 6 | $\begin{array}{ll}0 & 59.139 \\ 1 & 8.995\end{array}$ | 42 | 6.900 | 42 | 0.116 | 6 | 058.977 | 42 | 6.881 | 42 | 0.115 |
| 8 | 188.995 | 43 | 7.064 | 43 | 0.119 | 7 | 18.807 | 43 | 7.044 | 43 | 0.117 |
| 9 | 128.708 | 4 | 7.228 7.393 | 44 | 0.121 | 8 | 118.636 | 44 | 7.208 | 44 | 0.120 |
|  |  |  |  | 45 | 0.124 | 9 | 128.466 | 45 | 7.372 | 45 | 0.123 |
|  |  | 46 | 7.557 | 46 | 0.127 | 10 | 138.296 | 46 |  | 46 | 0.126 |
| 11 | 148.421 | 47 | 7.722 | 47 | 0.129 | 11 | 138.125 | 47 | 7.699 | 47 | 0.128 |
| 12 | 158.278 | 48 | 7.886 | 48 | 0.132 | 12 | 157.955 | 48 | 7.864 | 48 | 0.131 |
| 13 | $2{ }^{2} 88.134$ | 49 | 8.050 | 49 | 0.136 | 13 | 27.784 | 49 | 8.027 | 49 | 0.134 |
| 14 | 217.991 | 50 | 8.214 | 50 | 0.138 | 14 | 217.614 | 50 | 8.191 | 50 | 0.137 |
| 15 | 227.847 | 51 | 8.378 | 51 | 0.141 | 15 | 227.442 | 51 |  |  |  |
| 16 | $237.70 \pm$ | 52 | 8.543 | 52 | 0.143 | 16 | 237.272 | 52 | 8.519 | 52 | 0.142 |
| 17 | 247.560 | 53 | 8.707 | 53 | 0.146 | 17 | 247.103 | 53 | 8.683 | 53 | 0.145 |
| 18 | 257.416 | 54 | 8.872 | 54 | 0.149 | 18 | 256.932 | 54 | 8.846 | 54 | 0.147 |
| 19 | 37.273 | 55 | 9.036 | 55 | 0.151 | 19 | 36.762 | 55 | 8.010 | 55 | 0.150 |
| 20 | 317.129 | 56 | 9.200 | 56 | 0.154 | 20 |  |  |  |  |  |
| 21 | 3 28.986 | 57 | 9.364 | 57 | 0.157 | 21 | 3 36.421 | 57 | 9.174 9.338 | 56 | 0.153 0.156 |
| 22 23 | 336.841 346700 | 58 59 | 9.528 | 58 | 0.159 | 22 | 336.249 | 58 | 9.502 | 58 | 0.158 |
| 24 | ( 359.7500 | 69 60 | 9.692 9.856 | $\stackrel{69}{60}$ | 0.162 | 23 | 346.080 | 59 | 9.666 | 59 | 0.161 |
| Acceleration. |  |  |  |  |  | 24 | 365.909 | 60 | 9.829 | 60 | 0.164 |
|  |  |  |  |  |  | Digit Retardation. $\mathrm{O}_{\text {de }}$ |  |  |  |  |  |

GEODETICAL TABLES.

|  | vert |  | $\begin{aligned} & \text { nd } p \\ & \text { lerea } \end{aligned}$ |  | Equa- |  | $\begin{array}{r} \text { onve } \\ \text { an } \end{array}$ | $\begin{aligned} & \text { Sid } \\ & \text { Par } \end{aligned}$ |  |  | ace. grees |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | h. m. |  | m. | " | 8. | h. |  | m. |  |  | - " |
| 1 | 04 | 1 | 04 | 1 | 0.066 | 1 | 15 | 1 | 015 | 1 | 015 |
| 2 | 08 | 2 | 08 | 2 | 0.133 | 2 | 30 | 2 | 030 | 2 | 030 |
| 3 | 012 | 3 | 012 | 3 | 0.200 | 3 | 45 | 3 | 045 | 3 | 045 |
| 4 | 016 | 4 | 016 | 4 | 0.266 | 4 | 60 | 4 | 10 | 4 | 10 |
| 5 | 020 | 5 | 020 | 5 | 0.333 | 5 | 75 | 5 | 115 | 5 | 115 |
| 6 | 024 | 6 | 024 | 6 | 0.400 | 6 | 90 | 6 | 130 | 6 | 130 |
| 7 | 028 | 7 | 028 | 7 | 0.466 | 7 | 105 | 7 | 145 | 7 | 145 |
| 8 | 032 | 8 | 032 | 8 | 0.533 | 8 | 120 | 8 | 20 | 8 | 20 |
| 9 | 036 | 9 | 036 | 9 | 0.600 | 9 | 135 | 9 | 215 | 9 | 215 |
| 10 | 040 | 10 | 040 | 10 | 0.666 | 10 | 150 | 10 | 230 | 10 | 230 |
| 11 | 044 | 11 | 044 | 11 | 0.738 | 11 | 165 | 11 | 245 | 11 | 245 |
| 12 | 048 | 12 | 048 | 12 | 0.799 | 12 | 180 | 12 | 30 | 12 | 30 |
| 13 | 052 | 13 | 052 | 13 | 0.866 | 13 | 195 | 13 | 315 | 13 | 31.5 |
| 14 | 056 | 14 | 056 | 14 | 0.933 | 14 | 210 | 14 | 330 | 14 | 330 |
| 15 | 10 | 15 | 10 | 15 | 1.000 | 15 | 225 | 15 | 345 | 15 | 345 |
| 16 | 14 | 16 | 14 | 16 | 1.066 | 16 | 240 | 16 | 40 | 16 | 40 |
| 17 | 18 | 17 | 18 | 17 | 1.133 | 17 | 255 | 17 | 415 | 17 | 415 |
| 18 | 112 | 18 | 112 | 18 | 1.200 | 18 | 270 | 18 | 430 | 18 | 430 |
| 19 | 116 | 19 | 116 | 19 | 1.266 | 19 | 285 | 19 | 445 | 19 | 445 |
| 20 | 120 | 20 | 120 | 20 | 1.333 | 20 | 300 | 20 | 50 | 20 | 50 |
| 25 | 140 | 21 | 124 | 21 | 1.400 | 21 | 315 | 21 | 515 | 21 | 515 |
| 30 | 20 | 22 | 128 | 22 | 1.466 | 22 | 330 | 22 | 530 | 22 | 530 |
| 35 | 220 | 23 | 132 | 23 | 1.533 | 23 | 345 | 23 | 545 | 23 | 545 |
| 40 | 240 | 24 | 136 | 24 | 1.600 | 24 | 360 | 24 | 60 | 24 | 60 |
| 45 | 30 | 25 | 140 | 25 | 1.666 |  |  | 95 | 615 | 25 | 615 |
| 50 | 320 | 26 | 144 | 26 | 1.733 |  | ths. | 26 | 630 | 26 | 630 |
| 55 | 340 | 27 | 148 | 27 | 1.799 | ${ }^{8}$ |  | 27 | 645 | 27 | 645 |
| 60 | 40 | 28 | 152 | 28 | 1.866 | 0.1 | 1.5 | 28 | 70 | 28 | 70 |
| 65 | 420 | 29 | 156 | 29 | 1.933 | 0.2 | 3.0 | 29 | 715 | 29 | 715 |
| 70 | 440 | 30 | 20 | 30 | 2.000 | 0.3 | 4.5 | 30 | 730 | 30 | 730 |
| 75 | 50 | 31 | 24 | 31 | 2.065 | 0.5 | 7.5 | 31 | 745 | 31 | $\bigcirc 45$ |
| 80 | 520 | 32 | 28 | 32 | 2.133 | 0.6 | 9.0 | 32 | 80 | 32 | 80 |
| 90 | 60 | 33 | 212 | 33 | 2.200 | 0.7 | 10.5 | 33 | 815 | 33 | 815 |
| 100 | 640 | 34 | 216 | 34 | 2.266 | 0.8 | 12.0 | 34 | 830 | 34 | 830 |
| 110 | 720 | 35 | 220 | 35 | 2.333 | 0.9 | 13.5 | 35 | 845 | 35 | 845 |
| 120 | 80 | 36 | 224 | 36 | 2.400 | 1.0 | 15.0 | 36 | 90 | 36 | 90 |
| 130 | 840 | 37 | 228 | 37 | 2.466 |  |  | 37 | 915 | 37 | 915 |
| 140 | 920 | 38 | 232 | 38 | 2.533 | Hund | redths. | 38 | 930 | 38 | 930 |
| 150 | 100 | 39 | 236 | 39 | 2.600 | ${ }^{\text {8. }}$ |  | 39 | 945 | 39 | 945 |
| 160 | 1040 | 40 | 240 | 40 | 2.666 | 0.01 | 0.15 | 40 | 100 | 40 | 100 |
| 170 | 1120 | 41 | 244 | 41 | 2.733 | 0.03 | 0.45 | 41 | 1015 | 41 | 1015 |
| 180 | 120 | 42 | 248 | 42 | 2.799 | 0.04 | 0.60 | 42 | 1030 | 42 | 1030 |
| 190 | 1240 | 43 | 252 | 43 | 2.866 | 0.05 | 0.75 | 43 | 1045 | 43 | 1045 |
| 200 | 1320 | 44 | 256 | 44 | 2.933 | 0.06 | 0.90 | 44 | 110 | 44 | 110 |
| 210 | 140 | 45 | 30 | 45 | 3.000 | 0.07 | 1.05 | 45 | 1115 | 45 | 1115 |
| 220 | 1440 | 46 | 34 | 46 | 3.065 | 0.08 | 1.20 | 46 | 1130 | 46 | 1130 |
| 230 | 1520 | 47 | 38 | 47 | 3.133 | 0.09 | 1.35 | 47 | 1145 | 47 | 1145 |
| 240 | 160 | 48 | 312 | 48 | 3.200 | 0.10 | 1.50 | 48 | 120 | 48 | 120 |
| 250 | 1640 | 49 | 315 | 49 | 3.266 | Thous | Ith | 49 | 1215 | 49 | 1215 |
| 260 | 1720 | 50 | 320 | 50 | 3.333 | Thous | Iths. | 50 | 1230 | 50 | 1230 |
| 270 | 180 | 51 | 324 | 51 | 3.400 | 0.001 | 0.015 | 51 | 1245 | 51 | 1245 |
| 280 | 1840 | 52 | 328 | 52 | 3.466 | 0.002 | 0.030 | 52 | 130 | 62 | 130 |
| 290 | 1920 | 53 | 332 | 53 | 3.533 | 0.003 | 0.045 | 53 | 1315 | 53 | 1315 |
| 300 | 200 | 54 | 336 | 54 | 3.600 | 0.004 | 0.060 | 54 | -13 30 | 54 | 1330 |
| 310 | 2040 | 55 | 340 | 55 | 3.666 | 0.005 | 0.075 | 55 | 1345 | 55 | 1345 |
| 320 | 2120 | 56 | 344 | 56 | 3.733 | 0.006 | 0.090 | 56 | 14.0 | 56 | 140 |
| 330 | 220 | 57 | 348 | 57 | 3.799 | 0.007 | 0.105 | 57 | 1415 | 57 | 1415 |
| 340 | 2240 | 58 | 352 | 58 | 3.866 | 0.008 | 0.120 | 58 | 1430 | 58 | 1430 |
| 350 | 2320 | 59 | 356 | 59 | 3.933 | 0.009 | 0.135 | 59 | 1445 | 59 | 1445 |
| 360 | 240 | 60 | 40 | 60 | 4.000 | 0.010 | 0.150 | 60 | 15 | 60 | 150 |
| Or to convert Dugrees and parts of Terrestrial Longitude into Time. |  |  |  |  |  | Or to convert Time into Degrees and Parts of Terrestrial Longitude. |  |  |  |  |  |


| Table XXX. Diurnal Variations. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interv. 24 hrs. | $\begin{aligned} & \mathrm{m}_{10}^{\prime} \end{aligned}$ | ${\underset{20}{\prime} .}_{\substack{\prime \\ \hline}}$ | $\underset{80}{\mathbf{m}_{\mathbf{\prime}}^{\prime}}$ | $\stackrel{1}{\text { m }}$ | $\underset{2}{\mathrm{~m}}$ | $\underset{8}{\text { m }}$ | $\mathrm{m}_{4}^{\prime}$ | ${\underset{5}{\mathrm{~m}}}_{5}^{\prime}$ | $\underset{6}{\mathbf{m}_{6}^{\prime}}$ | $\underset{7}{\mathrm{~m}}$ | $\underset{8}{\text { m }}$ | $\stackrel{\dot{m}}{9}$ | Interv. 12 hrs |
| h. | m. | m. ${ }_{\text {m }}^{\text {g. }}$ | m. |  |  |  |  |  |  |  |  |  | m. |
| 00 | 080 | 0 | 00.0 | 00.0 | 0 | 0 | 0 | 00.0 | 0 | 0 | 080.0 | 0 | 00 |
| 030 | 012.5 | 025.0 | 037.5 | $\begin{array}{ll}0 & 1.2\end{array}$ | 02.5 | 03.7 | 0 | 06.2 | 07.5 | 088 | 010.0 | 011.2 | 015 |
|  | 025.0 | 050.0 | 115.0 | 02.5 | 05.0 | 07.5 | 010.0 | 012.5 | 015.0 | 017.5 | 020.0 | 022.5 | 030 |
| 130 | 037.5 | 115.0 | 132.5 | 0 | 07.5 | 011.2 | 015.0 | 018.7 | 022.5 | 026.2 | 030.0 | 033.7 | 045 |
| 20 | 050.0 | 140.0 | 230.0 | 0 | 010.0 | 015.0 | 020.0 | 025.0 | 030.0 | 035.0 | 040.0 | 045.0 | 10 |
| 230 | 12.5 | 25.0 | 37.5 | 0 | 012.5 | 018.7 | 025.0 | 031.2 | 037.5 | 043.7 | 050.0 | 056.2 | 115 |
| 30 | 115.0 | 230.0 | 345.0 | 0 | 015.0 | 022.5 | 030.0 | 037.5 | 045.0 | 052.5 | $1 \begin{array}{ll}1 & 0.0\end{array}$ | 17.5 | 130 |
| 330 | 127.5 | 255.0 | 422.5 | 08.7 | 017.5 | 026.2 | 035.0 | 043.7 | 052.5 | 11.2 | 110.0 | 118.7 | 145 |
|  | 140.0 | 320.0 | 50.0 | 010.0 | 020.0 | 030.0 | 040.0 | 050.0 | 10.0 | 110.0 | 120.0 | 130.0 | 20 |
| 430 | 152.5 | 345.0 | 537.5 | 011.2 | 022.5 | 033.7 | 045.0 | 056.2 | 17.5 | 118.7 | 130.0 | 141.2 | 215 |
| $\begin{array}{lll}5 & 0 \\ 5\end{array}$ | $2 \begin{array}{ll}2 & 5.0\end{array}$ | 410.0 | 615.0 | 0 12.5. | 025.0 | 037.5 | 050.0 | 12.5 | 115.0 | 127.5 | 140.0 | 152.5 | 230 |
| 530 | 217.5 | 435.0 | 652.5 | $013.7{ }^{\circ}$ | 027.5 | 041.2 | 055.0 | 18.7 | 122.5 | 136.2 | 150.0 | 28.7 | 245 |
| 60 | 230.0 | 50.0 | 730.0 | 015.0 | 030.0 | 045.0 | 10.0 | 115.0 | 130.0 | 145.0 | 20.0 | 215.0 | 30 |
| 630 | 2 42,5 | 525.0 | 87.5 | 016.2 | 032.5 | 048.7 | 15.0 | 121.2 | 137.5 | 153.7 | 210.0 | 226.2 | 315 |
|  | 255.0 | 550.0 | 845.0 | 017.5 | 035.0 | 052.5 | 110.0 | 127.5 | 145.0 | 22.5 | 220.0 | 237.5 | 330 |
| 730 | 37.5 | 615.0 | 922.5 | 018.7 | 037.5 | 056.2 | 115.0 | 133.7 | 152.5 | 211.2 | 230.0 | 248.7 | 345 |
|  | 320.0 | 640.0 | $10 \quad 0.0$ | 020.0 | 040.0 | 10.0 | 120.0 | 140.0 | 20.0 | 220.0 | 240.0 | $3 \quad 0.0$ | 0 |
| 830 | 3325 | 75.0 | 1037.5 | 021.2 | 042.5 | 13.7 | 125.0 | 146.2 | 27.5 | 228.7 | 250.0 | 311.2 | 415 |
| 90 | 3450 | 730.0 | 1115.0 | 022.5 | 045.0 | 17.5 | 130.0 | 152.5 | 215.0 | 237.5 | 30.0 | 322.5 | 430 |
| 930 | 357.5 | 755.0 | 115.5 | 023.7 | 047.5 | 111.2 | 135.0 | 158.7 | 222.5 | 246.2 | 310.0 | 333.7 | 445 |
| 10 | 410.0 | 820.0 | 1230.0 | 025.0 | 050.0 | 115.0 | 140.0 | 25.0 | 230.0 | 255.0 | 320.0 | 345.0 | 50 |
| 1030 | $4<2.5$ | 845.0 | 137.5 | 026.2 | 052.5 | 118.7 | 145.0 | 211.2 | 237.5 | 33.7 | 330.0 | 356.2 | 515 |
| 11.0 | 435.0 | 910.0 | 1345.0 | 027.5 | 055.0 | 122.5 | 150.0 | 217.5 | 245.0 | 312.5 | 340.0 | 47.5 | 530 |
| 1130 | 447.5 | 935.0 | 1422.5 | 028.7 | 057.5 | 126.2 | 155.0 | 223.7 | 252.5 | 321.2 | 350.0 | 418.7 | 545 |
| 120 | 50.0 | 100.0 | 150.0 | 030.0 | 10.0 | 130.0 | 20.0 | 230.0 | 30.0 | 330.0 | 40.0 | 430.0 | 0 |
| 1230 | 512.5 | 1025.0 | 1537.5 | 031.2 | 12.5 | 133.7 | 25.0 | 236.2 | 37.5 | 338.7 | 410.0 | 441.2 | 615 |
| 13.0 | 525.0 | 1050.0 | 1615.0 | 032.5 | 15.0 | 137.5 | 210.0 | 242.5 | 315.9 | 347.5 | 420.0 | 452.5 | 630 |
| 1330 | 537.5 | 1115.0 | 1652.5 | 033.7 | 17.5 | 141.2 | 215.0 | 248.7 | 322.5 | 356.2 | 430.0 | 53.7 | 645 |
| 14.0 | 550.0 | 1140.0 | 1730.0 | 035.0 | 110.0 | 145.0 | 220.0 | 255.0 | 330.0 | 45.0 | 440.0 | 515.0 |  |
| 1430 | 62.5 | 125.0 | 187.5 | 036.2 | 112.5 | 148.7 | 225.0 | 3 1.2 | 337.5 | $\pm 13.7$ | 450.0 | 526.2 | 715 |
| 150 | 6.15 .0 | 1230.0 | 1845.0 | 037.5 | 115.0 | 152.5 | 230.0 | $\begin{array}{lll}3 & 7.5\end{array}$ | 345.0 | 422.5 | $5 \begin{array}{ll}5 & 0.0\end{array}$ | 537.5 | 730 |
| 1530 | 627.5 | 1255.0 | 1922.5 | 038.7 | 117.5 | 156.2 | 235.0 | 313.7 | 352.5 | $\pm 31.2$ | 510.0 | 548.7 | 745 |
| 16 | 640.0 | 1320.0 | $20 \quad 0.0$ | 040.0 | 120.0 | 20.0 | 240.0 | 320.0 | 40.0 | 440.0 | 520.0 | 60.0 | 80 |
| 1630 | 652.5 | 1345.0 | -0 37.5 | 041.2 | 122.5 | 23.7 | 245.0 | 326.2 | 47.5 | 448.7 | 530.0 | 611.2 | 815 |
| 17 l | 75.0 | 1410.0 | -2 15.0 | 0 42.5 | 125.0 | 27.5 | 250.0 | 332.5 | 415.0 | 457.5 | 540.0 | 622.5 | 830 |
| 1730 | 717.5 | 1435.0 | 2152.5 | 043.7 | 127.5 | 211.2 | 255.0 | 338.7 | 422.5 | 56.2 | 550.0 | 633.7 | 845 |
| 18 180 | 730.0 | 150.0 | 2230.0 | 045.0 | 130.0 | 215.0 | 30.0 | 345.0 | 430.0 | 515.0 | $6 \begin{array}{ll}6 & 0.0\end{array}$ | 645.0 |  |
| 1830 | 7 42.5 | 1525.0 | 237.5 | 046.2 | 132.5 | 218.7 | 385.0 | 351.2 | 437.5 | 523.7 | 610.0 | 656.2 | 915 |
| 190 | 755.0 | 1550.0 | 2345.0 | 047.5 | 135.0 | 222.5 | 310.0 | 357.5 | 445.0 | 532.5 | 620.0 | 77.5 | 930 |
| 1930 | 87.5 | 1615.0 | 24 22.5 | 048.7 | 137.5 | 226.2 | 315.0 | 43.7 | 452.5 | 541.2 | 630.0 | 718.7 | 945 |
| 20 | 820.0 | 1640.0 | $25 \quad 0.0$ | 050.0 | 140.0 | 230.0 | 320.0 | 410.0 | 50.0 | 550.0 | 640.0 | 730.0 | 100 |
| 2030 | 832.5 | 175.0 | 2537.5 | 051.2 | 142.5 | 233.7 | 325.0 | 416.2 | 578 | 558.7 | 650.0 | 741.2 | 1015 |
| 21.0 | 8450 | 1730.0 | 2615.0 | 052.5 | 145.0 | 237.5 | 330.0 | 422.5 | 515.0 | 67.5 | $7 \begin{array}{ll}7 & 0.0\end{array}$ | 752.5 | 1030 |
| 2130 | 857.5 | 1755.0 | 2652.5 | 053.7 | 147.5 | 241.2 | 335.0 | 428.7 | 522.5 | 616.2 | 710.0 | 83.7 | 1045 |
| 220 | 910.0 | 1820.0 | 2730.0 | 055.0 | 150.0 | 245.0 | 340.0 | 435.0 | 530.0 | 625.0 | 720.0 | 815.0 |  |
| 2230 | 922.5 | 1845.0 | 287.5 | 056.2 | 152.5 | 248.7 | 345.0 | 441.2 | 537.5 | 633.7 | 730.0 | 826.2 | 1115 |
| 230 | 935.0 | 1910.0 | 2845.0 | 057.5 | 155.0 | 252.5 | 350.0 | 447.5 | 545.0 | 642.5 | 740.0 | 837.5 | 1130 |
| 2330 | 947.5 | 1935.0 | 2922.5 | 058.7 | 157.5 | 256.2 | 355.0 | 453.7 | 552.5 | 651.2 | 750.0 | 848.7 | 1145 |
| 240 | $10 \quad 0.0$ | $20 \quad 0.0$ | $30 \quad 0.0$ | 10.0 | 20.0 | $3 \quad 0.0$ | $4 \quad 0.0$ | 50.0 | 60.0 | $7 \quad 0.0$ | $8 \quad 0.0$ | 90.0 | 120 |
| m. | 8. | 8. |  | ${ }^{8}$ | 8. | s. |  |  |  | 8. | ${ }^{1}$ | ${ }^{8}$. | m. |
| 2 | 0.8 | 1.7 | 2.5 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.7 | 1 |
| 4 | 1.7 | 3.3 | 5.0 | 0.2 | 0.3 | 0.5 | 0.7 | 0.8 | 1.0 | 1.2 | 1.3 | 1.5 | 2 |
| 6 | 2.5 | 5.0 | 7.5 | 0.2 | 0.5 | 0.7 | 1.0 | 1.2 | 1.5 | 1.7 | 2.0 | 2.2 | 3 |
| 8 | 3.3 | 6.7 | 10.0 | 0.3 | 0.7 | 1.0 | 1.3 | 1.7 | 2.0 | 2.3 | 2.7 | 3.0 | 4 |
| 10 | 4.2 | 8.3 | 12.5 | 0.4 | 0.8 | 1.2 | 1.7 | 2.1 | 2.5 | 2.9 | 3.3 | 3.7 | 5 |
| 12 | 5.0 | 10.0 | 15.0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.6 | 4.0 | 4.5 | 6 |
| 14 | 5.8 | 11.7 | 17.5 | 0.6 | 1.2 | 1.7 | 2.3 | 2.9 | 3. | 4.1 | 4.7 | 5.2 | 7 |
| 16 | 6.7 | 13.3 | 20.0 | 0.7 | 1.3 | 2.0 | 2.7 | 3.3 | 4.0 | 4.7 | 5.3 | 6.0 | 8 |
| 18 | 7.5 | 15.0 | 22.5 | 0.7 | 1.5 | 2.2 | 3.0 | 3.7 | 4.5 | 5.2 | 6.0 | 6.7 | 9 |
| 20 | 8.3 | 16.7 | 25.0 | 0.8 | 1.7 | 2.5 | 3.3 | 4.2 | 5.0 | 6.8 | 6.7 | 7.5 | 10 |
| 22 | 9.2 | 18.3 | 27.5 | 0.9 | 1.8 | 2.7 | 3.7 | 4.6 | 5.5 | 6.4 | 7.3 | 8.2 | 11 |
| 24 | 10.0 | 20.0 | 30.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 12 |
|  | 10.8 | 21.7 | 32.5 | 1.1 | 2.2 | 3.2 | 4.3 | 5.4 | 6.5 | 7.6 | 8.7 | 9.7 | 13 |
|  | 11.7 | 23.3 | 35.0 | 1.2 | 2.3 | 3.5 | 4.7 | 5.8 | 7.0 | 8.2 | 9.3 | 10.5 | 14 |

Table XXXI. Shewing the lengths of horizontal lines equivalent to the several ascending and descending planes, the length of the plane being unity ; in reference to the different classes of Engines, including the gross load, with engine and tender.

| $\left\|\begin{array}{c} \text { Gradi- } \\ \text { ents. } \end{array}\right\|$ | First Class Engines, Load 100 tons. |  |  | First Class Engines, Load 50 tons. |  |  | Second Class Fngines, Load 80 tons. |  |  | Second Class Engines, Load 40 tons. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Equivalent Horizontal Planes. |  |  | Equivalent Horizontal Planes. |  |  | Equivalent Horizonta Planes. |  |  | Equivalent Horizontal Planes. |  |  |
|  | As. | Dec. | Mean. | A8. | Dec. | Mean. | As. | Dec. | Mean. | As. | Dec. | Mean. |
| 1 in 90 | 2.50 | 1.00 | 1.75 | 1.99 | 1.00 | 1.49 | 2.60 | 1.00 | 1.80 | 2.07 | 1.00 | 1.53 |
| 95 | 2.42 | 1.00 | 1.71 | $1.9 \pm$ | 1.00 | 1.47 | 2.51 | 1.00 | 1.75 | 2.02 | 1.00 | 1.51 |
| 100 | 2.39 | 1.00 | 1.69 | 1.89 | 1.00 | 1.44 | 2.44 | 1.00 | 1.72 | 1.97 | 1.00 | 1.48 |
| 110 | 2.23 | 1.00 | 1.61 | 1.81 | 1.00 | 1.40 | 2.38 | 1.00 | 1.69 | 1.88 | 1.00 | 1.44 |
| 120 | 2.12 | 1.00 | 1.56 | 1.74 | 1.00 | 1.37 | 2.20 | 1.00 | 1.60 | 1.80 | 1.00 | 1.40 |
| 130 | 2.04 | 1.00 | 1.52 | 1.68 | 1.00 | 1.34 | 2.10 | 1.00 | 1.55 | 1.74 | 1.00 | 1.37 |
| 140 | 1.96 | 1.00 | 1.46 | 1.64 | 1.00 | 1.32 | 2.03 | 1.00 | 1.51 | 1.69 | 1.00 | 1.34 |
| 160 | 1.84 | 0.83 | 1.33 | 1.56 | 0.83 | 1.20 | 1.90 | 0.83 | 1.36 | 1.60 | 0.83 | 1.21 |
| 180 | 1.79 | 0.83 | 1.31 | 1.49 | 0.83 | 1.16 | 1.80 | 0.83 | 1.31 | 1.53 | 0.83 | 1.18 |
| 200 | 1.67 | 0.83 | 1.25 | 1.44 | 0.83 | 1.13 | 1.72 | 0.83 | 1.27 | 1.48 | 0.83 | 1.15 |
| 250 | 1.53 | 0.83 | 1.18 | 1.36 | 0.83 | 1.09 | 1.58 | 0.83 | 1.20 | 1.42 | 0.83 | 1.12 |
| 300 | 1.45 | 0.83 | 1.14 | 1.30 | 0.83 | 1.06 | 1.48 | 0.83 | 1.15 | 1.32 | 0.83 | 1.07 |
| 350 | 1.38 | 0.83 | 1.10 | 1.25 | 0.83 | 1.04 | 1.41 | 0.83 | 1.12 | 1.27 | 0.83 | 1.05 |
| 400 | 1.33 | 0.83 | 1.08 | 1.22 | 0.83 | 1.02 | 1.36 | 0.83 | 1.09 | 1.24 | 0.83 | 1.03 |
| 500 | 1.27 | 0.83 | 1.05 | 1.18 | 0.83 | 1.01 | 1.28 | 0.83 | 1.05 | 1.19 | 0.83 | 1.01 |
| 750 | 1.18 | 0.83 | 1.01 | 1.12 | 0.88 | 1.00 | 1.19 | 0.83 | 1.01 | 1.13 | 0.88 | 1.00 |
| 1000 | 1.13 | 0.85 | 1.00 | 1.09 | 0.91 | 1.00 | 1.14 | 0.86 | 1.00 | 1.09 | 0.91 | 1.00 |
| 1500 | 1.09 | 0.90 | 1.00 | 1.06 | 0.94 | 1.00 | 1.09 | 0.91 | 1.00 | 1.03 | $0.9 \pm$ | 1.00 |
| Gradients. | Third Class Engines, Load 80 tons. |  |  | Third Class Engines, Load 40 tons. |  |  | Fourth Class Engines Load 60 tons. |  |  | Fourth Class Engines, Load 30 tons. |  |  |
|  | Equivalent Horizontal Planes. |  |  | Equivalent Horizonta Planes. |  |  | Equivalent Horizonta Planes. |  |  | Equivalent Horizontal Planes. |  |  |
|  | As. | Dec. | Me | As. | Dec. | Mean. | As. | Dec. | Mean. | As. | Dec. | Mean. |
| 1 in 90 | 2.66 | 1.00 | 1.83 | 2.14 | 1.00 | 1.57 | 2.51 | 1.00 | 1.75 | 2.00 | 1.00 | 1.50 |
| 95 | 2.58 | 1.00 | 1.79 | 2.08 | 1.00 | 1.54 | 2.44 | 1.00 | 1.72 | 1.95 | 1.00 | 1.47 |
| 100 | 2.50 | 1.00 | 1.75 | 2.02 | 1.00 | 1.51 | 2.36 | 1.00 | 1.68 | 1.90 | 1.00 | 1.45 |
| 110 | 2.36 | 1.00 | 1.68 | 1.93 | 1.00 | 1.46 | 2.33 | 1.00 | 1.66 | 1.82 | 1.00 | 1.41 |
| 120 | 2.25 | 1.00 | 1.62 | 1.85 | 1.00 | 1.42 | 2.14 | 1.00 | 1.57 | 1.75 | 1.00 | 1.37 |
| 130 | 2.15 | 1.00 | 1.57 | 1.78 | 1.00 | 1.39 | 2.05 | 1.00 | 1.52 | 1.69 | 1.00 | 1.34 |
| 140 | 02.07 | 1.00 | 1.53 | 1.73 | 1.00 | 1.36 | 1.97 | 1.00 | 1.48 | 1.64 | 1.00 | 1.32 |
| 160 | 0 | 0.83 | 1.43 | 1.64 | 0.83 | 1.23 | 1.85 | 0.83 | 1.34 | 1.56 | 0.83 | 1.20 |
| 180 | 1.83 | 0.83 | 1.33 | 1.57 | 0.83 | 1.20 | 1.75 | 0.83 | 1.29 | 1.50 | 0.83 | 1.16 |
| 200 | 01.75 | 0.83 | 1.29 | 1.52 | 0.83 | 1.17 | 1.68 | 0.83 | 1.25 | 1.45 | 0.83 | 1.14 |
| 250 | 01.60 | 0.83 | 1.21 | 1.41 | 0.83 | 1.12 | 1.54 | 0.83 | 1.18 | 1.35 | 0.83 | 1.09 |
| 300 | 0 | 0.83 | 1.16 | 1.34 | 0.83 | 1.08 | 1.45 | 0.83 | 1.14 | 1.30 | 0.83 | 1.06 |
| 350 | 01.43 | 0.83 | 1.13 | 1.29 | 0.83 | 1.06 | 1.39 | 0.83 | 1.10 | 1.26 | 0.83 | 1.04 |
| 400 | 01.37 | 0.83 | 1.10 | 1.25 | 0.83 | 1.04 | 1.34 | 0.83 | 1.08 | 1.22 | 0.83 | 1.02 |
| 500 | 01.30 | 0.83 | 1.06 | 1.20 | 0.83 | 1.01 | 1.23 | 0.83 | 1.03 | 1.18 | 0.83 | 1.01 |
| 750 | 0 | 0.83 | 1.01 | 1.13 | 0.87 | 1.00 | 1.18 | 0.83 | 1.01 | 1.12 | 0.83 | 1.00 |
| 1000 | 1.15 | 0.85 | 1.00 | 1.10 | 0.90 | 1.00 | 1.13 | 0.87 | 1.00 | 1.09 | 0.91 | 1.00 |
| 1500 | $0 \quad 1.10$ | 0.90 | 1.00 | 1.07 | 0.93 | 1.00 | 1.09 | 0.91 | 1.00 | 1.06 | 0.94 | 1.00 |
| Gradi ents. | Mean Class Engines, Load 50 tons. By W. G. |  |  |  |  |  |  |  | Gradients. | Velocities in Miles an Hour. By Dr Lardner. |  |  |
|  | Equivalent Horizontal Planes. |  |  |  | Gradients. | Equivalent Horizonta: Planes. |  |  |  | Ascen. Plane. | Dec. Plane. | Mean or Level. |
|  |  |  | c. M | Iean. |  | As. | Dec. | Mean. | 1 in 177 | Miles. | Miles. <br> 41.32 |  |
|  |  |  | 72 | . 00 | n 500 | 1.12 | 0.88 | 1.00 | 1in 265 | 24.87 | 39.13 | Miles. <br> 31.78 |
|  | 2501. |  | . 75 | . 00 | 550 | 1.10 | 0.90 | 1.00 | 330 | 25.16 | 37.07 | 31.16 |
|  | 3001. |  | . 78 | . 00 | 600 | 1.08 | 0.92 | 1.00 | 400 | 26.87 | 36.75 | 31.81 |
|  | 350 |  | . 80 | . 00 | 650 | 1.05 | 0.95 | 1.06 | 532 | 27.35 | 34.30 | 30.82 |
|  | 400 |  | . 83 | . 00 | 700 | 1.03 | 0.97 | 1.00 | 590 | 27.37 | 33.16 | 30.26 |
|  | 4501. |  | . 85 | . 00 | Level | 1.00 | 1.00 | 1.00 |  | 29.03 | 32.58 | 30.80 |
|  |  |  |  |  |  |  |  |  | Level or Meap |  |  | 31.23 |


|  | Slopes, 1 to 1. |  |  | Slopes, $1 \frac{1}{2}$ to 1. |  |  | Slopes, 2 to 1. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Depth of Cut ting in Fect. | Half width at top in Feet. | Content in cubic yards per chain. | Content of 1 per-pendicular foot in breadth. | Half width at top in Feet. | Content in cubic yards per chain. | Content of 1 per-pendicular foot in breadth. | Half width at top in Feet. | Cortent in cubic yarde per chain. | Content of 1 per-pendicular foot in breadth. |
| 1 | 16 | 75.78 | 2.44 | 16.5 | 77.00 | 2.44 | 17 | 78.22 | 2.44 |
| 2 | 17 | 156.42 | 4.89 | 18.0 | 161.33 | 4.89 | 19 | 166.22 | 4.89 |
| 3 | 18 | 242.00 | 7.33 | 19.5 | 253.00 | 7.33 | 21 | 264.00 | 7.33 |
| 4 | 19 | 332.44 | 9.78 | 21.0 | 352.00 | 9.78 | 23 | 371.55 | 9.78 |
| 5 | 20 | 427.78 | 12.22 | 22.5 | 453.33 | 12.22 | 25 | 488.89 | 12.22 |
| 6 | 21 | 528.00 | 14.67 | 24.0 | 572.00 | 14.67 | 27 | 616.00 | 14.67 |
| 7 | 22 | 633.11 | 17.11 | 25.5 | 693.00 | 17.11 | 29 | 752.89 | 17.11 |
| 8 | 23 | 743.11 | 19.56 | 27.0 | 821.33 | 19.56 | 31 | 899.55 | 19.56 |
| 9 | 24 | 858.00 | 22.00 | 28.5 | 957.00 | 22.00 | 33 | 1056.00 | 22.00 |
| 10 | 25 | 977.78 | 24.44 | 30.0 | 1100.00 | 24.44 | 35 | 1222.22 | 24.44 |
| 11 | 26 | 1102.44 | 26.89 | 31.5 | 1250.33 | 26.89 | 37 | 1398.22 | 26.89 |
| 12 | 27 | 1232.00 | 29.33 | 33.0 | 1408.00 | 29.33 | 39 | 1584.00 | 29.33 |
| 13 | 28 | 1366.44 | 31.78 | 34.5 | 1573.00 | 31.78 | 41 | 1779.65 | 31.78 |
| 14 | 29 | 1505.78 | 34.22 | 36.0 | 1745.33 | 34.22 | 43 | 1984.89 | 34.22 |
| 15 | 30 | 1650.00 | 36.66 | 37.5 | 1925.00 | 36.66 | 45 | 2\%00.00 | 36.66 |
| 16 | 31 | 1799.11 | 39.11 | 39.0 | 2118.00 | 39.11 | 47 ! | 2424.89 | 39.11 |
| 17 | 32 | 1953.11 | 41.55 | 40.5 | 2306.33 | 41.55 | 49 | 2659.55 | 41.55 |
| 18 | 33 | 2112.00 | 43.99 | 42.0 | 2508.00 | 43.99 | 51 | $290 \pm .00$ | 43.99 |
| 19 | 34 | 2275.78 | 46.44 | 43.5 | 2717.00 | 46.44 | 53 | 3158.22 | 46.44 |
| 20 | 35 | 2444.44 | 48.89 | 45.0 | 2933.33 | 48.89 | 55 | 3422.22 | 48.89 |
| 21 | 36 | 2618.00 | 51.33 | 46.5 | 3517.00 | 51.33 | 57 | 3696.00 | 51.33 |
| 22 | 37 | 2793.44 | 53.77 | 48.0 | 3388.00 | 53.77 | 59 | 3979.55 | 53.77 |
| 23 | 38 | 2979.78 | 56.21 | 49.5 | 3626.33 | 56.21 | 61 | 4272.89 | 56.21 |
| 24 | 39 | 3168.00 | 58.66 | 51.0 | 3872.00 | 68.66 | 63 | 4576.00 | 58.66 |
| 25 | 40 | 3831.11 | 61.10 | 52.5 | 4185.00 | 61.10 | 65 | - 4888.89 | 61.10 |
| 26 | 41 | 3599.11 | 63.55 | 54.0 | 4385.33 | 63.55 | 67 | 5211.55 | 63.65 |
| 27 | 42 | 3762.00 | 65.99 | 55.5 | 4653.00 | 65.99 | 69 | 5544.00 | 65.99 |
| 28 | 43 | 3969.78 | 68.43 | 57.0 | 4928.00 | 68.43 | 71 | 5886.22 | 68.43 |
| 29 | 44 | 4182.44 | 70.88 | 58.5 | 5210.33 | 70.88 | 73 | 6238.22 | 70.88 |
| 30 | 45 | 4400.00 | 73.32 | 60.0 | 5500.00 | 73.32 | 75 | 6600.00 | 73.22 |
| 31 | 46 | 4622.44 | 75.77 | 61.5 | 5797.00 | 75.77 | 77 | 6971.55 | 75.77 |
| 32 | 47 | 4849.78 | 78.22 | 63.0 | 6101.33 | 78.22 | 79 | 7352.89 | 78.22 |
| 33 | 48 | 5082.00 | 80.67 | 64.5 | 6413.00 | 80.67 | 81 | 7744.00 | 80.67 |
| 34 | 49 | 5319.11 | 83.11 | 66.0 | 6732.00 | 83.11 | 83 | 8144.89 | 83.11 |
| 35 | 50 | 5561.11 | 85.55 | 67.5 | 7058.33 | 85.55 | 85 | 8555.55 | 85.55 |
| 36 | 51 | 5808.00 | 88.00 | 69.0 | 7392.00 | 88.00 | 87 | 8976.00 | 88.00 |
| 37 | 52 | 6059.78 | 90.44 | 70.5 | 7733.00 | 90.44 | 89 | 9406.22 | 90.44 |
| 38 | 53 | 6316.44 | 92.39 | 72.0 | 8081.33 | 92.39 | 91 | 9846.22 | 92.39 |
| 39 | 54 | 6578.00 | 95.33 | 73.5 | 8437.00 | 95.33 | 93 | 10296.00 | 95.33 |
| 40 | 55 | 6844.44 | 97.77 | 75.0 | 8800.00 | 97.77 | 95 | 10755.55 | 97.77 |
| 41 | 56 | 7115.78 | 100.22 | 76.5 | 9170.33 | 100.22 | 97 | 11224.89 | 100.22 |
| 42 | 57 | 7397.00 | 102.66 | 78.0 | 9548.00 | 102.66 | 99 | 11704.00 | 102.66 |
| 43 | 58 | 7673.11 | 105.11 | 79.5 | 9933.00 | 105.11 | 101 | 12192.89 | 105.11 |
| 44 | 59 | 7959.11 | 107.55 | 81.0 | 10325.33 | 107.55 | 103 | 12691.55 | 107.55 |
| 45 | 60 | 8250.00 | 109.99 | 82.5 | 10725.00 | 109.99 | 105 | 13200.00 | 109.99 |
| 46 | 61 | 8545.78 | 112.44 | 84.0 | 11132.00 | 112.44 | 107 | 13718.22 | 112.44 |
| 47 | 62 | 8846.44 | 114.88 | 85.5 | 11546.33 | 114.88 | 109 | 14246.22 | 114.88 |
| 48 | 63 | 9152.00 | 117.33 | 87.0 | 11938.00 | 117.33 | 111 | 14784.00 | 117.33 |
| 49 | 64 | 9462.44 | 119.77 | 88.5 | 12397.00 | 119.77 | 113 | 15331.55 | 119.77 |
| 50 | 65 | 9777.78 | 122.21 | 90.0 | 12833.33 | 122.21 | 115 | 15888.89 | 122.21 |

Example of the use of this Table. If a cutting of one Imperial Chain of 100 links in length and 20 feet in depth, were executed on a base or formation-level of 30 feet, how many cubic yards of earth would be thrown out, the slopes being 2 to 1 ?

To depth 20 feet in the left hand column, and under slopes 2 to 1 at top, there will be found 3422.22 cubic yards. Mr Macneill's Tables give $51.85 \times 66=\mathbf{3 4 2 2 . 1 0}$ cubic 5ards.


[^0]:    * About the 21st of August 1840, when I observed at Inchkeith, the declination of $\alpha$ Aquilæ, as given in the Connaisance des Tems, exceeded that in the Nautical Almanac by $2 \frac{1}{2}^{\prime \prime}$ !!! while that of Polaris agreed nearly:

[^1]:    * The method of applying all these corrections is given in the explanation of the tables, and illustrated by the following examples.

[^2]:    * See explanation of Table XXX.

[^3]:    * This formula is easily deduced from elementary investigations, but we are restricted to practice here.

[^4]:    Note.-In the following observations the scale of the level read to $3^{\prime \prime}$ at Lamlash, and formula (7) was employed to find $l$, the effects of the level; but at Inchkeith it read to $2^{\prime \prime}$, and formula (8) was employed. See pages 23 and 31.

[^5]:    * From these circumstances, though the position is given in the figure, the numerical results are not stated in the following table.

[^6]:    * In like manner latitudes north may be marked + , south - .

[^7]:    * There appears to be an error committed in the operation or solution of the example, making the distance $7 \frac{3}{4}$ miles, instead of 4741 feet, or about $\frac{3}{4}$ of a mile only!

[^8]:    * The marks $\Omega$ mean the sun's lower limb, and of shews the position of the sun in the cross wires of the telescope, \&c.

[^9]:    * See Explanation of Railway Tables.

[^10]:    * This is sometimes done by moving the part $\mathrm{A}^{\prime}$, and fixing it by $k$.

[^11]:    * This axis is equally or more conveniently situated, when it descends through the tripod.

[^12]:    * See the Edinburgh New Philosophical Journal for April 1841.

[^13]:    30్య
    
    0.1
    0.9
    1.6
    2.4
    3.1
    3.9
    4.6
    5.3
    6.0
    6.7
    7.3
    8.0
    8.6
    9.2
    9.8
    10.3
    10.9
    11.4
    11.8
    12.3
    12.7
    13.0
    13.4
    13.6
    13.9
    14.1
    14.3
    14.4
    14.5
    14.6
    0.1
    0.9
    1.7
    2.5
    3.4
    4.1
    4.9
    5.6
    6.4
    7.1
    7.8
    8.5
    9.2
    9.8
    10.5
    11.1
    11.6
    12.1
    12.6
    13.1
    13.5
    13.9
    14.3
    14.6
    14.9
    15.1
    15.3
    15.4
    15.5
    115.6
    1
    0.1
    1.0
    1.8
    2.7
    3.5
    4.4
    5.2
    6.0
    6.8
    7.6
    8.3
    9.1
    9.8
    10.5
    11.2
    11.8
    12.4
    12.9
    13.5
    14.0
    14.4
    14.8
    15.2
    15.5
    15.8
    16.1
    16.3
    16.4
    16.5
    16.6
    0.1
    1.1
    2.0
    2.9
    3.8
    4.7
    5.5
    6.4
    7.3
    8.1
    8.9
    9.7
    10.4
    11.2
    11.9
    12.5
    13.2
    14.8
    14.9
    15.3
    15.8
    16.2
    16.5
    17.8
    17.1
    17.3
    17.
    17.
    0.2
    1.1
    2.1
    3.1
    4.0
    5.0
    56.
    6.8
    7
    8.
    9
    10
    11.
    11.
    12.6
    13.
    14.0
    14.
    15.2
    15.8
    16.3
    16.8
    17
    17.6
    17.9
    18.
    18
    18
    18
    18.
    18.8

    90
    97
    84
    81
    78
    75
    72
    69
    66
    63
    60
    57
    54
    51
    48
    45
    42
    39
    36
    33
    30
    27
    24
    21
    18
    15
    12
    9
    6
    3
    3 $\begin{array}{r}0 \\ 3 \\ 6 \\ 9 \\ 9 \\ 12 \\ 15 \\ 18 \\ 21 \\ 24 \\ 27 \\ 27 \\ 30 \\ 33 \\ 36 \\ 39 \\ 42 \\ 45 \\ 48 \\ 48 \\ 51 \\ 54 \\ 57 \\ 60 \\ 63 \\ 63 \\ 66 \\ 69 \\ 72 \\ 72 \\ 75 \\ 78 \\ 81 \\ 84 \\ 87 \\ \hline\end{array}$
    0.
    0.
    0
    0
    0
    0
    1
    1.
    1
    2
    2
    2.
    3.
    3.
    4.
    4
    5
    6.
    6
    7
    7
    8
    8
    9
    9
    9
    9
    10
    10
    10
    10
    10
    
    
    
    
     0.0
    0.0
    0.2
    0.3
    0.5
    0.9
    1.2
    1.5
    2.0
    2.4
    3.0
    3.5
    4.0
    4.7
    5.3
    5.9
    6.5
    7.1
    7.7
    8.2
    8.8
    9.4
    9.8
    10.3
    10.8
    11.1
    11.4
    11.6
    11.7
    11.8
    0.0
    0.0
    0.2
    0.3
    0.6
    0.9
    1.2
    1.6
    2.0
    2.5
    3.1
    3.6
    4.1
    4.7
    5.4
    6.0
    6.6
    7.2
    7.8
    8.4
    9.0
    9.5
    10.
    10.5
    10.9
    11.4
    11.6
    11.7
    189
    12.1
    
    $\begin{array}{rr}0 & 0.0 \\ 1 & 11.8 \\ 2 & 22.7 \\ 3 & 32.1 \\ 4 & 39.3 \\ 5 & 43.4 \\ 6 & 43.7 \\ 7 & 39.7 \\ 8 & 30.7 \\ 9 & 16.1 \\ 9 & 55.4 \\ 10 & 28.3 \\ 10 & 54.3 \\ 11 & 13.2 \\ 11 & 24.7 \\ 11 & 28.7 \\ 11 & 25.2 \\ 11 & 14.1 \\ 10 & 55.7 \\ 10 & 30.0 \\ 9 & 57.4 \\ 9 & 18.3 \\ 8 & 32.9 \\ 7 & 42.0 \\ 6 & 45.9 \\ 5 & 45.4 \\ 4 & 41.0 \\ 3 & 33.5 \\ 2 & 23.7 \\ 1 & 12.3\end{array}$

